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Abstract—With the development of 3D and 2D data acquisition
techniques, it has become easy to obtain point clouds and images
of scenes simultaneously, which further facilitates dual-modal
semantic segmentation. Most existing methods for simultaneously
segmenting point clouds and images rely heavily on the quantity
and quality of the labeled training data. However, massive point-
wise and pixel-wise labeling procedures are time-consuming and
labor-intensive. To address this issue, we propose a parallel
dual-stream network to handle the semi-supervised dual-modal
semantic segmentation task, called PD-Net, by jointly utilizing
a small number of labeled point clouds, a large number of
unlabeled point clouds, and unlabeled images. The proposed
PD-Net consists of two parallel streams (called original stream
and pseudo-label prediction stream). The pseudo-label prediction
stream predicts the pseudo labels of unlabeled point clouds and
their corresponding images. Then, the unlabeled data is sent to
the original stream for self-training. Each stream contains two
encoder-decoder branches for 3D and 2D data respectively. In
each stream, multiple dual-modal fusion modules are explored
for fusing the dual-modal features. In addition, a pseudo-label
optimization module is explored to optimize the pseudo labels
output by the pseudo-label prediction stream. Experimental
results on two public datasets demonstrate that the proposed
PD-Net not only outperforms the comparative semi-supervised
methods but also achieves competitive performances with some
fully-supervised methods in most cases.

Index Terms—Point Clouds, Dual Modality, Semi-supervised
Semantic Segmentation.

I. INTRODUCTION

ITH the rapid development of both 3D and 2D data
W acquisition techniques, the 3D point clouds and images
of scenes could be easily acquired together by jointly utilizing
3D and 2D sensors. And the correspondences between 3D
points and image pixels could be easily calculated with the
intrinsic and extrinsic parameters of the sensors. Accordingly,
unlike the existing works [ 1]-[|8] that only segment uni-modal
data, many segmentation methods [9]-[15] are proposed to
combine the complementary information of point clouds and
images to boost performances, and they are trained in a
fully-supervised manner under a general pipeline shown in
Figure [T[a). This category of methods generally trains a 3D-
DNN-based extractor to learn features for segmenting point
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Fig. 1. Pipeline comparison of three segmentation categories: (a) fully-
supervised dual-modal 3D segmentation, (b) semi-supervised uni-modal 3D
segmentation, and (c) semi-supervised dual-modal segmentation. The orange
boxes represent either the unlabeled data or its corresponding labels, while
the green boxes represent either the labeled data or its corresponding labels.
‘CE Loss’ represents the cross-entropy loss.
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clouds by minimizing the cross-entropy loss with regard to
ground-truth 3D labels, with the assistance of the correspond-
ing features extracted by a 2D-DNN-based extractor. However,
it has to spend an expensive cost on data annotation.

In order to alleviate the above data annotation problem,
some works [16]—[25] focus on semi-supervised semantic seg-
mentation. Figure [T{b) shows the pipeline of semi-supervised
uni-modal 3D segmentation, whose training data contains a
small percentage of labeled point clouds and a large per-
centage of unlabeled point clouds. This category of methods
generally trains a 3D-DNN-based extractor iteratively to learn
features for segmenting point clouds, by minimizing the cross-
entropy loss with regard to both the ground-truth 3D labels of
the labeled point clouds and the predicted pseudo labels of
the originally unlabeled point clouds. However, these semi-
supervised methods only use uni-modal data, which could not
make the most of the collected dual-modal data. Thus, how
to utilize the complementary information in point clouds and
images to solve the semi-supervised dual-modal segmentation
problem remains to be investigated.

Figure [Ifc) shows the general pipeline of semi-supervised
dual-modal segmentation, whose training data contains a small
percentage of labeled point clouds, a large percentage of un-
labeled point clouds, and a set of unlabeled images. Since the
camera parameters are either given by some datasets or easily
calculated by some commonly-used calibration techniques, the
labels of the projected 2D pixels by the 3D points could be
identified according to the camera parameters. This category
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of methods employs an iterative optimization strategy: At each
iteration, it trains and updates a 2D-DNN-based extractor to
learn 2D features for segmenting images by minimizing a
cross-entropy loss with regard to the labels of the projected
2D pixels, with the assistance of the corresponding features
extracted from point clouds by a 3D-DNN-based extractor.
Then with the assistance of the learned 2D features, a 3D-
DNN-based extractor is trained and updated to learn features
for segmenting point clouds by minimizing a cross-entropy
loss with regard to both the ground-truth 3D labels of the
labeled point clouds and the predicted pseudo labels of the
unlabeled point clouds.

To handle the semi-supervised dual-modal semantic seg-
mentation task, we propose a parallel dual-stream network,
called PD-Net. It contains two parallel streams with the same
architecture: an original stream, and a pseudo-label prediction
stream whose parameters are updated by the Exponential
Moving Average (EMA) strategy [24]]. Each stream in PD-
Net contains a 3D encoder-decoder branch, a 2D encoder-
decoder branch, and multiple dual-modal fusion modules. The
3D and 2D branches are utilized to extract 3D and 2D features
respectively. Intuitively, jointly leveraging dual-modal features
could improve the segmentation performance, considering the
complementarity of 3D features and 2D features (i.e., the 3D
features contain rich geometric information but lack textural
information, while the 2D features are enriched with color
and textural information but are short of depth information).
However, direct fusion may dilute the inter-modal attentive
weights, which could undermine the performance instead. To
fully exploit the complementary information in dual-modal
data, we propose the dual-modal fusion module, which fuses
the 3D and 2D latent features via a multi-head attention-based
mechanism. Besides, a consistency loss term is designed to
constrain the semantic consistency between the 3D and 2D
features. The labeled point clouds and their corresponding
images are only trained in the original stream, and the labels
of the images are projected from the point clouds according
to the sensor parameters. The unlabeled point clouds and
their corresponding images are trained in both two streams.
Specifically, the output of the original stream is supervised
by the pseudo labels output by the pseudo-label prediction
stream. To improve the quality of the pseudo labels generated
by the pseudo-label prediction stream so that the effectiveness
of the self-training strategy for the unlabeled point clouds
and their corresponding images is guaranteed, we propose the
pseudo-label optimization module to leverages pseudo labels
of one modality to improve the quality of pseudo labels of
another modality based on a voting mechanism. The pseudo-
label optimization module is non-parametric, thus it is free
from inductive bias and performance degeneration due to the
domain gap between different modalities.

In sum, the main contributions of this paper include:

o We propose the dual-modal fusion module and the consis-
tency loss term, which could effectively fuse the features
of point clouds and images.

« We propose the pseudo-label optimization module, which
is helpful for improving the quality of the predicted
pseudo labels.

e We propose the PD-Net, which consists of the afore-
mentioned dual-modal fusion module, consistency loss
term, and pseudo-label optimization module. To our best
knowledge, this work is the first attempt to investigate
how to utilize dual-modal data to handle the semi-
supervised segmentation task for both point clouds and
images.

The remainder of this paper is organized as follows. Some
existing methods on 3D semi-supervised semantic segmenta-
tion, 2D semi-supervised semantic segmentation, and fully-
supervised dual-modal semantic segmentation are reviewed in
Section The proposed method is introduced in detail in
Section The experimental results are reported in Section
Finally, we conclude this paper in Section

II. RELATED WORKS

In this section, we first introduce the related semi-supervised
segmentation methods of point clouds and images respectively.
Then, we introduce the related fully-supervised segmentation
methods that combine the point clouds and images.

A. 3D Semi-supervised Semantic Segmentation

To alleviate the annotation burden, label-efficient 3D se-
mantic segmentation (including weakly-supervised [26]], [27],
semi-supervised [16]-[22]], and unsupervised 3D semantic
segmentation) has drawn growing attention among researchers.
In this work, we delve into semi-supervised 3D semantic
segmentation, which aims at utilizing a small number of
densely labeled data and a large number of unlabeled data
for model training.

Some early semi-supervised 3D segmentation works [16],
[17] rely on additional information (i.e., expert annotation) to
constrain the features of unlabeled point clouds. However, the
application is limited because the introduced expert knowledge
is not applicable to all circumstances. To overcome this defect,
Li et al. [18] proposed to design an adversarial architecture to
calculate the confidence discrimination of pseudo labels for the
unlabeled point clouds, and select the pseudo labels with high
reliability. Jiang et al. [[19] proposed to utilize the contrastive
loss based on the pseudo-label guidance to enhance the feature
representation and model generalization ability in the semi-
supervised setting. Deng et al. [21] proposed to combine the
geometry and color-based super-points to optimize the pseudo
labels to guarantee the reliability of the self-training of the
unlabeled points. Taking the prior knowledge of LiDAR point
clouds into consideration, Kong et al. [20] proposed to mix
laser beams from different LiDAR scans and then encourage
the model to make consistent and confident predictions before
and after mixing. Li er al. [22] designed a soft pseudo-label
method informed by LiDAR reflectivity to make full use of
the limited labeled points and abundant unlabeled points.

B. 2D Semi-supervised Semantic Segmentation

The great advances of semi-supervised learning in image
classification [23]], [24] inspire the investigation of semi-
supervised semantic segmentation [28]—-[39] for images. Early
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works on 2D semi-supervised semantic segmentation lever-
aged the Generative Adversarial Networks (GAN) to syn-
thesize high-quality pseudo labels. Hung et al [40] de-
signed a fully-convolutional discriminator which enables semi-
supervised learning by searching the reliable regions in pre-
dicted results of unlabeled images, thereby providing ad-
ditional supervisory signals for training. Mittal et al. [29]
proposed a GAN-based branch to improve the low-level details
in segmentation predictions, which is helpful for alleviating
low-level artifacts in the low-data regime.

Recently, researchers have paid more and more attention to
consistency regularization and contrastive learning. Chen et al.
[31] imposed the consistency between networks with different
initialization and encouraged the high similarity between the
predictions of the two networks, which expands the training
data by regarding the pseudo labels as the supervision for unla-
beled images. Mai et al. [39] proposed a coherent RankMatch
network that leverages the inter-pixel correlations to construct
more safe and effective supervision signals. Inspired by the
great success of contrastive learning in unsupervised learning,
Zhao et al. [32] designed a simple yet effective contrastive
learning-based training strategy for semi-supervised segmen-
tation, which increases intra-class compactness and inter-class
separability. Liu er al. [41] proposed a contrastive learning
framework designed at a regional level that performs semi-
supervised pixel-level contrastive learning on a sparse set of
hard negative pixels. Zhou et al. [42] designed the cross-set
pixel-wise contrastive learning, which facilitates feature rep-
resentation ability and feature alignment under perturbations.
Alonso et al. [33] maintained a memory bank that is updated
across the whole dataset, and then enforced the network to
yield similar pixel-level feature representations for same-class
samples. Wang et al. [34] proposed to apply regularization
on the structure of the feature cluster, which is expected to
increase the intra-class compactness in feature space. Zhong
et al. [35]] combined consistency regularization and contrastive
learning, which simultaneously constrains the label-space con-
sistency property between images under different perturbations
and the feature space contrastive property among different
pixels. Liang et al. [36] proposed to reason with logic-induced
diagnoses and enable the recovery of erroneous pseudo labels,
which could ultimately alleviate the notorious error accumula-
tion problem. Tian et al. [43]] proposed to conduct contrastive
learning in both low-level image space and high-level feature
space to maximize the utilization of available unlabeled data.

C. Fully-supervised Dual-modal Semantic Segmentation

In recent years, many methods [9]-[13], [44]]-[47] have
been proposed to jointly use the two modalities (i.e., 3D point
clouds and images) to improve the semantic segmentation
performances. Dai et al. [|[9] proposed to project the multi-view
image features to the voxels and merge the multi-view features
with the voxel features for better performance. Considering the
computational complexity of the voxel representation, Jaritz et
al. [10] designed a feature aggregation module to aggregate the
3D features projected from images to the original point clouds.
Jaritz et al. [46] proposed to mutually project the sampled

image and point cloud features, and minimize the distribution
discrepancies between the dual-modal features. Hu et al. [47]]
designed a bidirectional projection module where the point
cloud and image features could interact with each other so that
the advantages of these two modalities could be combined for
better performance. Based on [47], Wang et al. [48] leveraged
the semantic information to further enhance the mid-level
features, which is proved to be helpful for improving both
point cloud and image segmentation performances. Zhuang
et al. [13] proposed a collaborative fusion scheme to exploit
perceptual information from two modalities. Yan er al. [[12]
proposed a general training scheme to acquire semantic and
structural information from the dual-modal data by distilling
the information of 2D images to the 3D network. Li e al.
[49] proposed a method named MSeg3D. It utilizes joint intra-
modal feature extraction and inter-modal feature fusion to
mitigate the modality heterogeneity and explores the asym-
metric multi-modal diversified augmentation transformations
for effective training.

The above-mentioned fully-supervised methods require ex-
pensive cost for labeling, while the proposed PD-Net could
simultaneously segment the point clouds and images with a
small number of 3D labels and no 2D label needed.

III. METHODOLOGY

In this section, we introduce our proposed PD-Net in detail.
Firstly, we describe the overall architecture of the proposed
network. Then, we introduce the designed dual-modal fusion
module, consistency loss function, and pseudo-label optimiza-
tion module respectively. Finally, we present the total loss
function of the proposed network.

A. Architecture

The architecture of the proposed PD-Net is shown in
Figure Zh. As seen from this figure, PD-Net employs a parallel
two-stream structure: an original stream and a pseudo-label
prediction stream. The original stream is utilized to simulta-
neously segment the point clouds and images. The pseudo-
label prediction stream is utilized to predict pseudo labels
for the unlabeled point clouds and their corresponding images
for self-training in the original stream. The parameters of the
pseudo-label prediction stream W,,; are updated according
to the original stream based on the EMA method [24]. The
EMA method could retain the historical information via a
progressive-update strategy, which could mitigate the negative
influence brought by the false pseudo labels. Specifically, the
updated parameters of the original stream are denoted as W7/,
. In the s-th training step, the updated parameters of the
pseudo-label prediction stream W;,l are formulated as:

W, =ax Wy +(1-a)xW, (1)

ori)

where o = min(1 — ﬁ, tema), and tepmq is a predetermined
threshold. The labeled point clouds and their corresponding
images are trained in the original stream, and the labels of
images are projected from the labels of point clouds. The
unlabeled point clouds and their corresponding images are
trained in both two streams, their corresponding outputs of
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Fig. 2. Architecture of the proposed PD-Net and the original stream / the pseudo-label prediction stream in PD-Net. The proposed PD-Net contains an
original stream and a pseudo-label prediction stream. The Pseudo-label Optimization (PLO) module is utilized to optimize the pseudo labels output by the
pseudo-label prediction stream. CE Loss represents the cross entropy loss. The labeled point clouds and their corresponding images are only trained in the
original stream, while the unlabeled point clouds and their corresponding images are trained in both two streams. The stream in PD-Net contains 3D and 2D
encoder-decoder branches for dual-modal data, and multiple Dual-modal Fusion (DMF) modules to fuse the dual-modal latent features. The consistency loss
function is utilized to constrain the dual-modal output features in the original stream.

the original stream are supervised by the pseudo labels output
from the Pseudo-label Optimization (PLO) module.

In PD-Net, the original stream and the pseudo-label predic-
tion stream have the same architecture, as shown in Figure [2p.
Both two streams contain a 3D encoder-decoder branch, a
2D encoder-decoder branch, and multiple Dual-modal Fusion
(DMF) modules. The 3D and 2D encoder-decoder branches
are utilized to extract features from point clouds and images
respectively.

B. Dual-modal Fusion Module

The DMF module is used to fuse the latent features of
point clouds and images at each layer of the 3D and 2D
decoders. The consistency loss term is explored to constrain
the consistency of the 3D features and 2D features in the
original stream. The PLO module is utilized to optimize the
coarse pseudo labels output by the pseudo-label prediction
stream.

The Dual-modal Fusion (DMF) module is designed to
fuse the 3D and 2D latent features. Considering the inherent
domain gap between the two modalities, we only fuse the
latent features of the paired points and pixels. And the point-
to-pixel correspondences could be easily calculated according
to the pre-calibrated intrinsic and extrinsic parameters of the
sensors. The coordinates of the paired points and pixels are
denoted as {p;,z;}Y,, where p; € R? is the coordinate of
the point, z; € Z? is the coordinate of the pixel, and N is the
number of matching pairs. The DMF module takes the paired
3D feature f(p;) and 2D feature f(x;) from the current 3D
and 2D decoder layers as input, and outputs the fused 3D
feature g(p;) and fused 2D feature g(z;), which are further
fed into the next 3D and 2D decoder layers, respectively.

Learning 3D fused features: Multi-head attention-based
fusion mechanism is employed to fuse the paired latent fea-
tures in the DMF module. Figure [3|illustrates the calculation
process of the 3D fused feature g(p;). Specifically, Minkowski
convolution [50] operation and convolution operation are

performed on f(p;) and f(z;) respectively to extract their
corresponding key feature K (-), query feature Q(-), and value
feature V'(-). Then, the dot product, summation, and Softmax
operations are performed on the 3D key feature K (p;) and 2D
query feature QQ(z;) to obtain the 3D attention map A(p;).
Weighted summation is performed on A(p;) and 3D value
feature V' (p;) to obtain the multi-head attention feature, which
is extended to the same dimension with f(p;) by a Minkowski
convolution layer and concatenated with f(p;). Finally, the
concatenated feature passes through a Minkowski convolution
layer to output the 3D fused feature.

The above-mentioned calculation process of the 3D fused
feature g(p;) could be formulated as:

atr) =M (M( 3 (4o Vi) & £00)). @)

where A(p;) = Softmax(z (K(pi) © Q(:EZ))), M denotes
the Minkowski convolution, ® denotes the dot product, and &
denotes the concatenation.

Learning 2D fused features: Similarly, the calculation
process of the 2D fused feature g(x;) is formulated as:

ga) = (c( L (a6 o V) @ ). O

where A(x;) = Softmax(Z (K(zi) ® Q(pi))), and C de-
notes the commonly-used convolution.

We utilize multiple DMF modules to fuse the 3D and 2D
latent features in multiple scales. Compared with direct feature
concatenation, the proposed multi-head attention-based fusion
mechanism could extract more discriminative and informative

features from the two modalities, which would be demon-
strated in Subsection

C. Consistency Loss

In order to constrain the consistency between the learned
dual-modal features in the output feature spaces of the original
stream, we propose the consistency loss term.
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Fig. 3. The calculation process of the 3D fused feature g(p;) in the dual-modal fusion module. The dimensions of the key feature K(-), query feature
Q(-), and value feature V'(-) are the results of dividing the dimensions of their corresponding latent feature f(-) by the head number H. di and d2 denote
the dimensions of 3D features and 2D features respectively. The attention-based mechanism in the dual-modal fusion module facilitates adaptively learning

complementary information from dual-modal data.

The paired output features of the 3D and 2D branches in
the original stream are denoted as {y(p;),y(x;)}},. Then,
the proposed consistency loss term Loss, is formulated as:

N
1
L=l — (el @)
i=1
where || - ||2 denotes the L2-norm.

Overall, the dual-modal fusion module and the consistency
loss term fuse the dual-modal features in different levels of
feature space.

D. Pseudo-label Optimization Module

Due to the inherent limitations of the two modalities (i.e.,
the lack of texture information in point clouds and the lack of
depth information in images), the 3D and 2D encoder-decoder
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Fig. 4. The optimization process of 3D (top) and 2D (bottom) pseudo-labels.
The coarse 2D pseudo labels are projected to point clouds to obtain the
projected 3D pseudo labels. The coarse 3D pseudo labels are densified after
being projected to the image plane to obtain the projected 2D pseudo labels.
The black point denotes the pseudo label that is deleted by the pseudo-label
optimization module.

branches tend to predict pseudo labels for objects according
to their geometric structures and textures respectively.

In order to guarantee the effectiveness of the self-training
of unlabeled data in the original stream, we propose the
Pseudo-label Optimization (PLO) module based on a voting
mechanism to improve the reliability of the pseudo labels. The
PLO module is only utilized for the paired unlabeled points
and pixels, whose coordinates are denoted as {p;‘,xf}iv:“l,
where N, is the number of the unlabeled matching pairs. It
takes the coarse pseudo labels of the unlabeled points and
pixels as input and outputs their corresponding optimized
pseudo labels.

Specifically, the coarse 3D and 2D pseudo labels of the
paired unlabeled point pj* and pixel x3' , which are output by
the pseudo-label prediction stream, are denoted as czp(pY¥)
and cop(z}) respectively. And the process of optimizing 3D
(top) and 2D (bottom) pseudo labels by the PLO module is
shown in Figure [

Optimization of 3D pseudo labels: Firstly, the coarse
2D pseudo label cop(x}) is projected to its paired point to
obtain the projected 3D pseudo label czp(x¥). The coarse
3D pseudo label c3p(p¥) is retained if it is consistent with
csp(x¥). Otherwise, a confidence-based filtering mechanism
is utilized. The confidence of the coarse 3D pseudo label is
simply the value of the c3p (p}')-th dimension of the 3D output
feature in the pseudo-label prediction stream, which is denoted
as Y. (p¥, csp(p¥)). The coarse 3D pseudo label c3p(py) is
retained if its confidence is larger than the predetermined
confidence threshold t.,, . Otherwise, the coarse 3D pseudo
label is deleted. The above process could be formulated as:

esp(py) . esp(a)) = esp(py) or
é3D (p?) = Vc(p};7 C3D (pf)) > tconfa (5)
deleted , other,

where ésp(pl) is the optimized 3D pseudo label.
Optimization of 2D pseudo labels: As seen in the bottom
part of Figure EI, the projected 2D pseudo label cop(pY¥) is
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sparse, which leaves the majority of the pixels unprojected.
To address this issue, we project each 3D output feature in
the pseudo-label stream into the image plane and perform
average pooling in the local areas for the unprojected pixels.
The dimension with the largest value in the pooled output
feature is selected as the dense 2D pseudo label éap(pY).

Similarly, the optimization process of the 2D pseudo label
is formulated as:

cap(xi) , Eap(p}) = cap(a}) or
é2D($;‘J) = ’Yc(fC%CzD(ﬁL)) > tconf7 (6)
deleted , other,

where é,p(z!) is the optimized 2D pseudo label.

E. Total Loss Function

As depicted in Figure [2h, four cross-entropy loss terms are
employed for the labeled point clouds and their corresponding
images, and the unlabeled point clouds and their corresponding
images, which are denoted as L., L.p, LYp, and LY.
And their targets are the ground truth 3D labels, projected 2D
labels, optimized 3D pseudo labels, and optimized 2D pseudo
labels, respectively. Since a normalization is performed during
the calculation process of the cross-entropy loss by dividing
the length of the input vector, the four losses have a same order
of magnitude, and we thus assign a same weight to them.

Combined with the consistency loss term L. in Subsec-
tion the total loss function Lot is formulated as:

‘Ctotal = EéD + ElQD + ACq?fD + ‘CgD + )\CEC7 (7)
where ). is the weight of the consistency loss term.
IV. EXPERIMENTS

A. Experimental Setup

Dataset: We evaluate the proposed PD-Net on the ScanNet
dataset [S1]], which contains 1613 indoor point clouds recon-

structed from depth images. In addition, the ScanNet dataset
contains more than 2.5 x 10 RGB images, and each point
cloud corresponds to more than 5000 images. The intrinsic and
extrinsic parameters of the sensors are also provided, which
enables the calculation of the point-to-pixel correspondences.
Both the 3D point clouds and images in the ScanNet dataset
are annotated with 20 semantic categories.

Implementation details and metrics: In this work, the
3D and 2D encoder-decoder branches, which are based on
MinkowskiNet18A [50] and ResNet34 [52] respectively, both
use the U-Net [55] architectures. For each 3D point cloud,
we randomly sample 3 images from its corresponding image
set for dual-modal training. The weight threshold ¢.,,, in the
EMA method is set to 0.999, the head number in the dual-
modal fusion module is set to 4, the confidence threshold
tconys in the pseudo-label optimization module is set to 0.9
for deleting the false labels with low confidences, and the
consistency loss weight A is set to 5. The voxel size is set to
Scm for efficient training. We apply the Stochastic Gradient
Descent (SGD) optimizer with a base learning rate of 0.01. The
batch size and epoch number is set as 16 and 150 respectively.
The data augmentation techniques include random flip, random
rotation, and color jittering.

For evaluating the performance of semi-supervised segmen-
tation, we split the training point clouds into a labeled set and
an unlabeled set. Specifically, we randomly sample the labeled
point clouds from the training point clouds with two different
ratios (i.e., 20% and 10%). Only the labeled point clouds and
their corresponding images are trained in the first 100 epochs
for a more stable semi-supervised training. The unlabeled point
clouds and their corresponding images are incorporated into
training in the last 50 epochs.

We use mean Intersection over Union (mloU), mean Ac-
curacy (mAcc), and Overall Accuracy (OA) as the evaluation
metrics for both 3D and 2D semantic segmentation.

TABLE I
EVALUATION RESULTS ON THE VALIDATION SET OF THE SCANNET DATASET [S1]]. THE BEST RESULTS ARE IN BOLD IN EACH METRIC.
Point Cloud Image

Method mloU  mAcc OA mloU  mAcc OA
MinkowskiNet18A [50]  59.31 6792 84.13 - - -
ResNet34 [52] - - - 45.04 59.20 74.96
Deng et al. [21] 55.12  63.61 82.43 - - -

20% TCSM-V2 [25] - - - 52.65 61.08 80.17
CPS [53] - - - 5523 6497 81.86
m-Model [23] 60.41 69.08 8434 51.09 60.08 78.81
Mean Teacher [24] 61.12 6947 8472 5182 60.56 79.68
Pseudo-Labels [54] 60.64 69.27 8451 53.01 62.17  80.68
PD-Net 63.38 71.61 86.28 60.17 70.78 83.29
MinkowskiNet18A [S0] 52.27 61.19  80.81 - - -
ResNet34 [52] - - - 43.00 55.09 7275
Deng et al. [21] 5238 60.76  81.18 - - -

10% TCSM-V2 [25] - - - 4698 57.61 74.25
CPS [53] - - - 48.01 58.76  76.02
7-Model [23] 54.84 6345 8154 4772 5756  75.57
Mean Teacher [24] 5524 63.70 81.79 46.63 57.39 74.10
Pseudo-Labels [54] 5447 6338 8140 46.83 5751 74.12
PD-Net 58.38 67.23 83.68 50.80 60.77 79.38
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TABLE II
EVALUATION RESULTS ON THE VALIDATION SET OF THE SCANNET. *
DENOTES THAT POINT CLOUDS AND IMAGES ARE TRAINED JOINTLY.
¥ DENOTES THAT ONLY DEPTH IMAGES ARE USED FOR TRAINING. §
DENOTES THAT ONLY RGB IMAGES ARE USED FOR TRAINING. # DENOTES
THAT RGB-D IMAGES ARE USED FOR TRAINING.

Method 3D mloU | Method 2D mloU
Pointnet++ [56] 53.5 ERFNetEnc § [57] 51.7
PoinConv [58] 61.0 AdaptNet++ § [59] 52.9
PointASNL [60] 63.5 AdaptNet++ 1 [59] 53.8
MVPNet [10] 65.0 Deeplabv3 § [61] 56.1
Minkowski42 [50] 68.0 ERFNetEnc 1 [57] 56.7
KPConv [62] 69.2 SSMA # [63] 61.1
JointPointBased [45] 69.2 RFBNet # [64] 62.6
PointTransformer [5]] 70.6 GRBNet # [65]] 62.6
BPNet * [47] 73.9 MCA-Net # [66] 64.3
StratifiedPT [67] 74.3 BPNet * [47] 71.9
PD-Net * (20%) 63.4 PD-Net * (20%) 60.2
PD-Net * (10%) 58.4 PD-Net * (10%) 50.8

B. Comparative Evaluation

Considering the 3D and 2D encoder-decoder branches are
based on MinkowskiNet18A [50] and ResNet34 [52] respec-
tively, we evaluate the performances of the baseline models
(i.e., MinkowskiNet18A and ResNet34) by training on the la-
beled set. Then, we compare the proposed PD-Net with several
semi-supervised uni-modal semantic segmentation methods for
point clouds [21] and images [25[], [53]]. In addition, several
typical semi-supervised learning methods are extended to
tackle the semi-supervised dual-modal semantic segmentation
task, including m-Model [23[], Mean Teacher [24]], and Pseudo-
Labels [54]]. We evaluate these semi-supervised learning meth-
ods based on MinkowskiNet18A and ResNet34 while retaining
their other experimental settings for a fair comparison. All
these comparative methods utilize the same labeled set and
unlabeled set.

Table |I| reports the quantitative results of the proposed
PD-Net and comparative methods on the validation set of
the ScanNet [51]. As seen from this table, in two different
labeled-ratio settings, the proposed PD-Net outperforms all
the comparative methods in point cloud segmentation and
image segmentation tasks. The proposed PD-Net outperforms
Pseudo-Labels, Deng et al. [21f], TCSM-V2 [25]], and CPS
[53]], because it could effectively utilize the complementary
information from the point clouds and images, and mitigate the
negative impact brought by the falsely predicted pseudo labels
to some extent. And the proposed PD-Net outperforms the 7-
Model and Mean Teacher, probably because the consistency
constraints between the latent features from different scales are
more powerful than the constraints between the output features
from different transformations.

Figure [5] and Figure [6] visualize the qualitative results of
point cloud segmentation and image segmentation respectively.
As seen from these figures, the proposed PD-Net predicts
more accurately than MinkowskiNet18A and ResNet34 in both
two labeled-ratio settings. We highlight the key regions in the
dark blue boxes. The visualization results demonstrate that the
proposed PD-Net yields promising performances in 3D and 2D
segmentation with only a small number of labeled point clouds
required.

In addition, we compare the proposed PD-Net, which is
trained in a semi-supervised manner, with several typical fully-
supervised semantic segmentation methods for point clouds
(50, 100, [45], 1471, 1501, 1561, 1581, [60], [62], [67] and
for images [47]], [57], [59], [61], [63]-[66] on the validation
set of the ScanNet. The corresponding results are reported
in Table As seen from this table, the PD-Net trained
under the 20%-labeled setting achieves comparable results
with the comparative fully-supervised methods, which further
demonstrates the effectiveness of the proposed PD-Net.

C. Ablation Study

The effectiveness of each key element in the proposed PD-
Net is verified by conducting ablation studies on the validation
set of ScanNet dataset [51]. The following models under two
labeled-ratio settings are compared:

o Baseline: The 3D and 2D encoder-decoder branches
(based on MinkowskiNet18A [50] and ResNet34 [52])
trained on the labeled point clouds and their correspond-
ing images.

e Model A: Based on Baseline, the pseudo-label supervi-
sion for unlabeled data is added.

e Model B: Based on Model A, the EMA method [24]
is utilized to update the parameters of the pseudo-label
prediction stream.

e Model C: Based on Model B, the Pseudo-label Opti-
mization (PLO) module and the consistency loss term
are added.

o PD-Net (the whole model): Based on Model C, the Dual-
modal Fusion (DMF) module is added.

The corresponding results are reported in Table As seen
from this table, Model A performs better than the Baseline,
indicating that the coarse pseudo labels generated by the
pseudo-label prediction stream could supervise the unlabeled
data to some extent. Model B makes further progress based on
Model A, demonstrating that using the historical information
to update the parameters of the pseudo-label prediction stream
is superior to the common updating strategy. The performances
of Model C are promoted based on Model B, which is
attributed to the consistency constraints between the 3D and
2D output features and the optimization of the pseudo labels.

TABLE III
ABLATION STUDIES OF THE INVOLVED COMPONENTS.

Point Cloud Image
Model mloU  mAcc OA mloU  mAcc OA
Baseline 5931 6792 84.13 4504 5920 74.96
Model A 60.64 6927 8451 5301 6217 80.68
20% | Model B 61.46 7020 8503 5502 6459  80.86
Model C 6226 7211 8556 5830 69.83 82.56
PD-Net 6338 7161 8628 6017 7078 83.29
Baseline 5227 61.19 8081 4300 5509 7275
Model A 5447 6338 8140 4683 5751 7412
10% | Model B 5472 67.66 81.52 47.07 5794 7534
Model C 5687 6649 8290 50.14 59.61 79.18
PD-Net 5838 6723 83.68 5080 60.77 79.38
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Fig. 5. Qualitative results of point cloud segmentation on the validation set of the ScanNet [5I]]. The segmentation results of the baseline model
(MinkowskiNet18A and ResNet34 [52]]) and our proposed PD-Net in two different labeled-ratio settings (20% and 10%) are visualized.

Wall Floor [ Cabinet Bed Chair [l Sofa Table [l Door Window [ Bookshelf
Picture [ Counter Desk Curtain [ Refrigerator Bathtub Shower curtain [l Toilet [ Sink [l Otherfurniture

] ¥ w_1{

- e
- e
(@) Input (b) Ground truth (c) MinkowskiNet18A / (d) MinkowskiNet18A / (e) PD-Net (20%) (f) PD-Net (10%)
ResNet34 ResNet34
(20%) (10%)

Fig. 6. Qualitative results of image segmentation on the validation set of the ScanNet [51]|. The segmentation results of the baseline model (MinkowskiNet18A
and ResNet34 [52]]) and our proposed PD-Net in two different labeled-ratio settings (20% and 10%) are visualized.
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TABLE IV
RESULTS OF PD-NET WITH DIFFERENT FUSION MODULES.
Point Cloud Image

Module  mloU  mAcc OA mloU  mAcc OA
20% BP [47] 6263 71.04 8580 5840 69.81 82.10
DMF 63.38 71.61 86.28 60.17 70.78 83.29
10% BP [47] 57.19 66.61 83.01 50.20 59.74 79.02
DMF 5838 67.23 83.68 50.80 60.77 79.38

TABLE V
RESULTS OF PD-NET WITH DIFFERENT tcon f -
Point Cloud Image
tcong mloU  mAcc OA mloU  mAcc OA

0.60 6231 7035 8542 5837 68.66 81.47

20% 0.85 62.83 71.04 8572 5889 69.12 8245

0.90 63.38 71.61 86.28 60.17 70.78 83.29

0.95 6295 7123 8595 59.10 6930 8278

0.60 56.14  65.87 8236 48.79 58.61 78.05

10% 0.85 5747 66.62 83.14 4930 5892 78.72

0.90 58.38 67.23 83.68 50.80 60.77 79.38

0.95 57.55 66.82 83.18 5024 6022 7898

The whole PD-Net achieves the best results in most cases,
probably because the DMF module could effectively fuse the
dual-modal latent features.

To further verify the superiority of the DMF module, we
replace the DMF module with a similar module for dual-
modal feature fusion, while keeping the experimental settings
and other modules unchanged. Specifically, we choose the
Bidirectional Projection (BP) module in BPNet [47]].

The comparison results are reported in Table As seen
from this table, the model with DMF module achieves better
segmentation performances, indicating that the multi-head
attention-based mechanism has stronger fusion ability than the
view fusion strategy in the BP module which simply learns the
impact factors for each view at every point.

D. Discussion

As seen from Tables [[| and [II]] on the ScanNet [51]] dataset,
the following points could be revealed:

o Comparison between the proposed PD-Net and its two
baseline methods (MinkowskiNet18A [50] and ResNet34
[52]): Table reports the ablation results on the main
components of PD-Net, where the two baselines are
trained with only labeled data. As seen from this table,
Models {A, B, C}, which introduce different operations
on pseudo labels of unlabeled data gradually, perform
better than each baseline. These results demonstrate that
the usage of unlabeled data for semi-supervised learning
is one reason of why PD-Net outperforms its baselines.
Moreover, the whole model PD-Net, which integrates
Model C and the explored dual-modal fusion module,
performs better than Models {A, B, C} and the base-
lines, demonstrating that the dual-modal fusion module
is another reason of PD-Net’s superiority to its baselines.

o Comparison between PD-Net and the uni-modal methods
[21]], [25], [53[]: On one hand, compared with the 3D
segmentation method [21]], it is noted from Tablethat the
baseline [50] of PD-Net performs better, demonstrating
that a strong baseline is one reason of why PD-Net
outperforms [21]]. According to this result and the above
discussion on the baselines, it could be further speculated
that the two reasons of why PD-Net outperforms the base-
lines are also the reasons of why PD-Net outperforms the
3D segmentation method [21]]. On the other hand, as seen
from Tables [[] and [[T]} the image segmentation methods
[25]], [53]] perform better than the baseline [52]], but worse
than Model C (with the pseudo-label optimization module
and the consistency loss) and the whole model (Model C
+ the dual-modal fusion module), demonstrating that the
pseudo-label optimization module, the consistency loss,
and the dual-modal fusion module are the reasons of PD-
Net’s superiority to the image segmentation methods [[25]],
[53].

o Comparison between PD-Net and the dual-modal meth-
ods [23], [24], [54] : As seen from Tables [I] and
both Model C (with the pseudo-label optimization module
and the consistency loss) and the whole model (Model C
+ the dual-modal fusion module) always perform better
than the three dual-modal methods, demonstrating that
the pseudo-label optimization module, the consistency,
and the dual-modal fusion module are the reasons of PD-
Net’ superiority.

It is noted from the above discussion that compared with
different existing methods, the reasons of PD-Net’ s superi-
ority are not always exactly identical, however, the pseudo-
label optimization module, the consistency loss, and the dual-
modal fusion module in PD-Net are always the factors for
guaranteeing PD-Net’ s superiority to all the comparative
methods, which support the claimed contributions in Section

o

E. Analysis on Hyper-parameters

In this section, we provide more analysis on some hyper-
parameters, including the confidence threshold ., in the

TABLE VI
RESULTS OF PD-NET WITH DIFFERENT Ac.
Point Cloud Image

Ae mloU  mAcc OA mloU  mAcc OA
0 61.72 70.65 84.837 5528 64.63 80.52
0.2 6291 71.14 8596 56.86 67.82 81.08
20% 1 63.21 7142 86.08 59.31 69.53 83.14
5 63.38 71.61 86.28 60.17 70.78 83.29
10 6282 7092 8599 59.17 68.82 83.66
50 6198 69.84 8431 5650 6492  80.69
0 55.11 66.07 8196 47.56 57.08 75.69
02 5790 67.82 8329 4888 58.12 78.12
10% 1 5771 6694 8322 50.20 60.18 78.83
5 58.38 6723 83.68 50.80 60.77 79.38
10 58.03 67.12 8329 50.71 6025 79.23
50 5487 6647 8237 4733 5676 7548
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TABLE VII
RESULTS OF PD-NET WITH DIFFERENT HEAD NUMBERS.
Point Cloud Image
H mloU mAcc OA mloU mAcc OA
3 6208 70.11 8558 57770 6752 8187
20% 4 6338 71.61 8628 60.17 70.78 83.29
5 6216 70.19 8557 5644 6553 82.04
35620 66.19 8246 4923 5889  78.75
10% 4 5838 6723 83.68 50.80 60.77 79.38
5 5647 6643 8251 4885 58.19 78.23

pseudo-label optimization module, the weight of consistency
loss A, and the voxel size. The experiments are conducted on
the validation set of ScanNet [51]].

Effect of confidence threshold. As seen in () and (6),
the confidence threshold t..,s affects the quality of the
optimized pseudo labels. We evaluate the proposed PD-Net
with teonp = {0.6,0.85,0.9,0.95} to estimate the insensitive
range of .., s. The corresponding results are reported in Table
which indicate that our model achieves relatively stable
performances when .., r ranges in [0.85, 0.95] and t.,,, ¢ With
a lower value (i.e., tcons = {0.6}) may impair the quality
of pseudo labels, and thus deteriorate the performances. The
model achieves the best performances when t.,, s = 0.9.

Effect of the weight for consistency loss. As seen in (7)),
the loss weight A\, affects the balance between the cross-
entropy loss terms and L£.. We evaluate the proposed PD-
Net with A, = {0,0.2,1,5,10,50} to estimate the insensitive
range of A\.. The corresponding results are reported in Ta-
ble [VI] which indicate that our method is relatively insensitive
to A. when )\, ranges in [0.2,10] and the performances drop
evidently when ). is set to extreme values (i.e., A, = {0,50}).
The model achieves the best performances in most cases when
Ac = 5.

Effect of head number. As stated in [71], multi-head
attention allows the model to jointly attend to information from
different representation subspaces at different positions, which
indicates that more heads could enhance the representation
ability of the model. However, as revealed in [[72], the majority
of attention heads can be removed without deviating too much
from the original performance and most heads are redundant
given the rest of the model at test time. And too many heads
may result in overfitting considering the strong representation

ability on the training set. Thus, the head number H in the
DMEF module affects the quality of the fused features and the
performance of the model.

Here, we evaluate the proposed PD-Net with H = {3,4,5}.
And the corresponding results are reported in Table As
seen from this table, compared with the results when H is set
as 4, the performances of 3D and 2D segmentation degrade
when H is set as 3 or 5. This phenomenon is consistent with
the revealed points in [71] and [72], which indicates that an
appropriate head number needs to be set.

Effect of voxel size. In previous experiments, we set the
voxel size to Scm for efficient training. We evaluate PD-Net
and baseline models with voxel size = {Scm, 2cm}, and the
corresponding results are reported in Table The results
show that decreasing voxel size could simultaneously improve
the performances of 3D and 2D segmentation, demonstrating
that fine-grained voxels could provide higher-quality 3D in-
formation and better boost the 2D semantic segmentation. But
in the meanwhile, smaller voxel size inevitably brings higher
computational cost and causes longer forward time, as seen in
the last column of Table

F. PD-Net on NYUv2

The NYUv2 dataset [68]] is a widely-used RGB-D dataset,
which contains 1449 densely annotated pairs of aligned RGB
and depth images. Following 3DMV [9], BPNet [47], and
SemAffiNet [48]], we additionally evaluate PD-Net on NYUv2
dataset by converting the depth images to pseudo point clouds
according to the camera’s pose matrix. We adopt the 13-
class configuration for a fair comparison with the comparative
methods [9]], [28]], [47]], [51], [69], [70].

We utilize the pixel-level classification accuracy metric
and report the results in Table As seen from this ta-
ble, our proposed PD-Net achieves comparable results with
the comparative fully-supervised RGB-D and joint 2D-3D
methods. The results on the NYUv2 dataset demonstrate the
effectiveness and generality of PD-Net.

G. Limitations

Figure [/| reports comparative failure cases on the ScanNet
[51] dataset between the proposed PD-Net and the Mean-
Teacher [24] that has a relatively better performance than the
other comparative methods. As seen from the red rectangles

TABLE VIII
RESULTS OF PD-NET AND BASELINE MODELS WITH DIFFERENT VOXEL SIZES.
Point Cloud Image
Model mloU  mAcc OA mloU  mAcc OA Time
Baseline (5cm)  59.31 67.92 84.13 45.04 5920 74.96 1.3s
20% Baseline (2cm) 5945 7035 83.73 49.84 61.00 76.52 3.1s
PD-Net (5cm) 63.38  71.61 86.28 60.17 70.78  83.29 2.5s
PD-Net (2cm) 64.72 75.68 88.17 6242 73.54 86.63 7.3s
Baseline (Scm) 5227 61.19 80.81 43.00 55.09 72.75 1.3s
10% Baseline (2cm) 55.00 65.16 8122 44.68 56.53 72.73 3.1s
PD-Net (5¢cm) 58.38 67.23 83.68 50.80 60.77  79.38 2.5s
PD-Net (2cm) 59.05 71.01 8550 58.16 68.63 82.80 7.3s
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Fig. 7. Failure cases of the proposed method and MeanTeacher [24] on the ScanNet [51]] dataset with 10% and % labeled data. The red and yellow rectangles

indicate the failure cases.

TABLE IX
SEMANTIC SEGMENTATION RESULTS ON NYUV2 [68]] USING DENSE
PIXEL-LEVEL CLASSIFICATION ACCURACY METRIC.

NYUv2 Accuracy
SceneNet [28] 52.5
Hermans et al. [69] 54.3
SemanticFusion [70] 59.2
ScanNet [51] 60.7
3DMV [9] 71.2
BPNet [47]] 73.5
SemAffiNet [48] 78.3
PD-Net (20%) 71.7

of this figure, the proposed PD-Net wrongly recognizes a
refrigerator as other furniture, while MeanTeacher also makes
a similar mistake. This is mainly due to the small amount of
training data for refrigerators. Additionally, as highlighted by
the yellow rectangles, the proposed method fails to accurately
recognize a small portion of a sofa, and the comparative
method faces the same issue. This is because the local part
of the sofa has a significantly different structure compared to
a complete sofa.

In summary, although the proposed method has shown its
superiority to some comparative methods, it is still hard for
both the proposed method and comparative method to make
accurate predictions for (i) objects with less training data
and (ii) local object parts that differ significantly from their
corresponding complete objects. It would be one of our future
works to alleviate the above issues.

V. CONCLUSIONS

We propose a parallel dual-stream network, called PD-
Net, to handle the semi-supervised dual-modal semantic seg-
mentation task. The proposed PD-Net consists of two paral-
lel streams (i.e., original stream and pseudo-label prediction

stream), in which the 3D and 2D encoder-decoder branches
are used to extract 3D and 2D features respectively, and
multiple dual-modal fusion modules are used to fuse the multi-
scale dual-modal latent features. The pseudo-label optimiza-
tion module is explored to improve the quality of the pseudo
labels output by the pseudo-label prediction stream. Experi-
mental results demonstrate that the proposed PD-Net not only
outperforms the comparative semi-supervised methods but also
achieves competitive performances with some fully-supervised
methods in most cases.
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