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Cayley Rotation Averaging: Multiple Camera
Averaging Under the Cayley Framework
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Abstract— Rotation averaging, which aims to calculate the
absolute rotations of a set of cameras from a redundant set
of their relative rotations, is an important and challenging
topic arising in the study of structure from motion. A central
problem in rotation averaging is how to alleviate the influence
of noise and outliers. Addressing this problem, we investigate
rotation averaging under the Cayley framework in this paper,
inspired by the extra-constraint-free nature of the Cayley rotation
representation. Firstly, for the relative rotation of an arbi-
trary pair of cameras regardless of whether it is corrupted
by noise/outliers or not, a general Cayley rotation constraint
equation is derived for reflecting the relationship between this
relative rotation and the absolute rotations of the two cameras,
according to the Cayley rotation representation. Then based on
such a set of Cayley rotation constraint equations, a Cayley-
based approach for Rotation Averaging is proposed, called CRA,
where an adaptive regularizer is designed for further alleviating
the influence of outliers. Finally, a unified iterative algorithm for
minimizing some commonly-used loss functions is proposed under
this approach. Experimental results on 16 real-world datasets and
multiple synthetic datasets demonstrate that the proposed CRA
approach achieves a better accuracy in comparison to several
typical rotation averaging approaches in most cases.

Index Terms— Cayley rotation representation, rotation aver-
aging, structure from motion.

I. INTRODUCTION

STRUCTURE from Motion (SfM) aims to recover the 3D
structure of a scene by computing the camera motion from

an input set of images, which is an important problem for 3D
reconstruction [1], [2], [3], [4], [5] and has many potential
applications in the fields of computer vision and robotics.
In recent years, a category of two-stage SfM methods, which
computes all the cameras’ global rotations at first and then
computes their global locations with these obtained global
rotations, has attracted more and more attention [6], [7], [8],
[9], [10], [11], [12], [13], [14].

The aforementioned two-stage SFM methods have to con-
front the following fundamental problem, i.e. the rotation
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averaging problem: how to calculate the absolute rotations
Ri (i = 1, 2, . . . , n) of n cameras from a given set of m relative
rotations Ri j among these cameras. In the noiseless case,
the absolute and relative rotations satisfy the basic rotation
constraint equation or its variant:

Ri j Ri = R j or Ri j = R j R−1
i

s.t. RT
i Ri = I3, |Ri | = 1, i = 1, 2, . . . , n (1)

where I3 is the 3-order identity matrix, and | • | represents the
determinant of a matrix.

Let G = {V, E} be an epipolar geometry graph for repre-
senting the relationships among the |V| = n cameras with
the given |E | = m relative rotations, where each vertex in
V represents a camera and each edge (i, j) ∈ E implies
that the relative rotation between cameras i and j has been
given (without loss of generality, we assume that i < j in
this paper). Let SO(3) be the 3D special orthogonal group,
i.e., the set of 3 × 3 rotation matrices that are orthogonal
matrices with determinant 1. Then due to the fact that the
input relative rotations (which could be obtained by some
relative rotation estimation methods [15], [16], [17], [18]) are
generally inaccurate, according to the basic rotation constraint
equation (1), many rotation averaging methods have been
proposed for estimating the absolute rotations by minimizing
the following unified-form distance metric:

min
{Ri }

n
i=1∈SO(3)

∑
(i, j)∈E

F(Ri j Ri , R j ), (2)

where F(·, ·) represents an arbitrary distance metric.
In general, there are two main rotation averaging tech-

niques: incremental rotation averaging [19], [20], [21] and
non-incremental rotation averaging [22], [23], [24], [25], [26].
The incremental rotation averaging technique firstly builds an
epipolar geometry sub-graph of an initial triplet of cameras,
and then iteratively adds the other cameras to the epipo-
lar geometry sub-graph one (or multiple) at a time. The
non-incremental rotation averaging technique computes the
absolute rotations of all the cameras together as a whole.
In fact, the non-incremental rotation averaging technique is the
basis of the incremental rotation averaging technique, and the
incremental rotation averaging technique could be considered
as such an iterative process where the non-incremental rotation
averaging technique is implemented on an epipolar geometry
sub-graph repeatedly at each iteration.

In this work, the non-incremental rotation averaging prob-
lem is investigated, and the related works on this problem are
introduced in the following subsection.
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A. Related Works
According to whether pre-processing operations are used or

not, the existing non-incremental rotation averaging methods
in literature can be roughly divided into two categories as
follows.

The first category generally employs the following two-
stage strategy: (i) At the pre-processing stage, considering that
the input set of relative rotations is inevitably infiltrated by
some outliers in real scenarios, an outlier filtering operation is
implemented for detecting and removing the outliers, resulting
in a relatively reliable subset of relative rotations; (ii) At the
optimization stage, the obtained subset of relative rotations are
used for estimating the absolute rotations by minimizing the
objective function (2) or its variants [11], [12], [13], [27],
[28]. For example, Zach et al. [28] collected statistics of
the residual transformation over many overlapping loops, and
then used them to detect outliers in the input set of relative
rotations for further rotation averaging. Purkait et al. [11]
employed a view-graph cleaning network for detecting outliers
and rectifying noisy measurements, and then introduced a
fine-tuning network for rotation averaging. Chen et al. [12]
proposed a hybrid method for rotation averaging by combining
a global solver and a local solver, where an additional view
graph filtering approach was introduced to remove outliers
as a pre-processing step. It has to be pointed out that the
preprocessing techniques used in the above methods could
not guarantee to identify and remove all the outliers among
the given relative rotations in theory, hence, some rotation
averaging methods (e.g., [12], [13]) have to utilize some
specific optimization techniques (e.g., iterative reweighting)
to further alleviate the influence of the remaining outliers at
their optimization stage.

Unlike the above two-stage methods, the second category
of rotation averaging methods employs a single-stage strat-
egy, which straightforward estimates the absolute rotations
from the input relative rotations. Crandall et al. [6] pro-
posed a rotation averaging method (called DISCO) using a
combination of discrete-continuous optimization, where extra
prior terms were added into the unified formulation (2).
Hartley et al. [22] used an L1-norm-based objective function
for alleviating the influence of outliers, and proposed an
iterative method based on the Weiszfeld algorithm for rotation
averaging. Govindu [29] proposed a Lie-Algebraic rotation
averaging method, where the axis-angle form of 3D rota-
tion was used for representing the basic rotation constraint
equation (1). Then, Chatterjee and Govindu [25] extended the
Lie-Algebraic rotation averaging method [29] for pursuing
a higher accuracy of rotation estimation. They firstly intro-
duced an L1-norm-based solver for averaging relative rotations
according to the Lie-Algebraic method [29], and then proposed
an iterative method by minimizing a Huber-like cost function,
where the L1 solution was used as an initial guess. Further-
more, they proposed a generalized computational framework
of rotation averaging [26], where different loss functions
could be utilized. They found that under this framework, the
L1/2-norm loss function performs better than the other com-
parative loss functions(here, their method with the L1/2-norm
loss function is denoted as FRRA1/2). Based on the spectral

graph theory, Eriksson et al. [30] provided a theoretical analy-
sis of Lagrangian duality in rotation averaging, and proposed
a first-order algorithm for semidefinite cone programming.
Dellaert et al. [31] proposed the Shonan rotation averaging
method, which could guarantee globally optimal solutions
under mild conditions on the measurement noise. Yang and
Carlone [32] proposed a general framework to explore certi-
fiable algorithms for geometric perception where outliers are
involved, and accordingly, the explored algorithms could be
applied to rotation averaging. Arrigoni et al. [33] investigated
the synchronization problem [34] that was formulated as a
low-rank and sparse matrix decomposition problem in the pres-
ence of missing data, outliers, and noise. And they proposed
a minimization strategy, called R-GoDec, which could deal
with the rotation averaging task. It has to be pointed out that
the single-stage methods do not oppose to the preprocessing
techniques used in the two-stage methods, and they could be
straightforwardly integrated with an additional preprocessing
technique to form new two-stage methods.

B. Motivation and Contributions

Despite the rapid progress in rotation averaging as discussed
above, it is noted that the estimation accuracies of the existing
methods on some challenging datasets where severe noise and
outliers are involved, are still quite low as reported in many
existing works [12], [26].

Addressing this problem, we investigate how to alleviate
the influence of noise and outliers on rotation averaging in
this work. Considering that some outliers in the input data
inevitably remain regardless of whether additional preprocess-
ing techniques are used or not, we aim to explore a new
single-stage rotation averaging method from the following two
points of view, motivated by several basic observations in the
optimization community:

1 It is observed that (i) for the input data that is corrupted
by noise and outliers, when the iterative optimization
approaches could not be guaranteed to converge to a glob-
ally optimal solution, two different parameterizations of
the same loss function might lead to result with different
numerical inaccuracies; (ii) Cayley transformation is a
mapping between skew-symmetric matrices and rotation
matrices [35], which has shown its numerical stability to
noise and outliers for handling the camera self-calibration
problem [36], [37]. The Cayley rotation representation,
which is obtained by transforming a 3×3 rotation matrix
under the Cayley transformation, is an extra-constraint-
free 3D vector whose elements are independent from
each other, and any Cayley rotation representation is
mathematically equivalent to its corresponding rotation-
matrix representation. Motivated by the two observations,
our first goal is to construct a new rotation constraint
with the Cayley representation, which is mathemat-
ically equivalent to the original one (i.e., Eq. (1)),
but is easy to solve and more robust to noise and
outliers.

2 It is observed that for an optimization problem where
some outliers are involved, if some additional attentions
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could be paid to the outliers adaptively during the opti-
mization process, an improved solution could be generally
obtained. Motivated by this observation, our second goal
is to design an adaptive mechanism to alleviate the
negative influence of outliers during the optimization
process.

By combining the aforementioned two goals, we propose
a single-stage computational approach for rotation averaging
under the Cayley transformation in this paper. We firstly
derive a general Cayley rotation constraint equation according
to the Cayley rotation representation. This general con-
straint equation is mathematically equivalent to the traditional
matrix-form rotation constraint equation (1), but it does not
require both the orthogonal constraint and matrix determinant
constraint that are indispensable for the matrix-form rotation
constraint equation. For an input set of relative rotations,
a set of general Cayley rotation constraint equations could
be obtained accordingly. Then, by utilizing the obtained
constraint equations, a Cayley-based approach for Rotation
Averaging is explored, called CRA. In the proposed CRA
approach, an adaptive regularizer is designed to weaken such
Cayley constraint equations that are corrupted by outliers.
Finally, we explore a unified algorithm for solving some
commonly-used objective functions under the proposed CRA
in an iterative optimization manner.

In sum, the main contributions in this work include:
• We propose the CRA approach for rotation averaging,

based on the general Cayley rotation constraint equation.
To the best of our knowledge, this work is the first attempt
to investigate the rotation averaging problem under the
Cayley framework.

• By embedding different loss functions into the proposed
CRA approach, different rotation averaging methods
could be straightforwardly derived, and a unified iterative
algorithm is presented for solving them.

• The effectiveness of the proposed CRA approach is
demonstrated by the experimental results on 16 public
datasets and 3 synthetic datasets in Section IV.

The remainder of this work is organized as follows:
Section II proposes the Cayley-based approach CRA for rota-
tion averaging. Section III presents the iterative algorithm for
optimizing the derived methods from CRA in detail. Extensive
experimental results are reported in Section IV, and followed
by some concluding remarks in Section V.

II. CAYLEY ROTATION AVERAGING

In this section, we elaborate the Cayley-based approach for
rotation averaging. Firstly, some preliminary knowledge on the
Cayley transformation and the Cayley rotation representation
is introduced. Then, we describe the general Cayley rotation
constraint equation and the proposed approach in detail.

A. Cayley Transformation and Rotation Representation

Considering that the Cayley transformation was used infre-
quently in computer vision and the proposed Cayley-based

approach for rotation is dependent on the Cayley rota-
tion representation, some basic knowledge of the Cayley
transformation and the Cayley rotation representation is intro-
duced here, and more details could be found in [35], [36],
and [37].

Assume a matrix X ∈ Rv×v is subject to |Iv + X | ̸= 0,
where ‘| • |’ represents the determinant of a matrix and Iv is
the v-order identity matrix, then the following function ψ(•)
is called the Cayley transformation that transforms the matrix
X into another matrix Y ∈ Rv×v:

Y = ψ(X) = (Iv − X)(Iv + X)−1
= (Iv + X)−1(Iv − X).

(3)

In addition, it is noted that if Y is the Cayley transformation
matrix of X (i.e. Y = ψ(X)), then according to (3), it holds:

X = ψ(Y ) = (Iv − Y )(Iv + Y )−1
= (Iv + Y )−1(Iv − Y ).

(4)

This means that X is also the Cayley transformation matrix
of Y .

Let c = [cx , cy, cz]
T

∈ R3×1 be a 3D vector, and [c]× ∈

R3×3 be the skew-symmetric matrix derived from c, i.e.

[c]× =

 0 −cz cy

cz 0 −cx

−cy cx 0

 . (5)

Let C(3) be the set of all the skew-symmetric matrices, and
SOπ (3) be the set of 3 × 3 rotation matrices whose rotation
angles equal to π . The Cayley transformation of an arbitrary
rotation matrix R ∈ SO(3)\SOπ (3) subject to |I3 + R| ̸= 0
(i.e. the rotation angle of R is not equal to π . In this paper,
we assume this condition always holds. In fact, it also holds
in most real-world datasets), is a 3 × 3 skew-symmetric
matrix [37] as:

[c]× = ψ(R) and R = ψ([c]×). (6)

The 3D vector c is called the Cayley rotation representation
of a rotation matrix R.

It has to be pointed out that the Cayley rotation representa-
tion is one of various parametrization representations (e.g.,
rotation matrix, angle-axis representation, Rodrigues repre-
sentation, etc.) for representing 3D rotations. Mathematically,
the Cayley transform defines the same map as the gnomonic
projection [24]. However, by comparing with the Rodrigues
representation derived via the gnomonic projection, the Cayley
rotation representation is more concise. By comparing with the
3 × 3 rotation matrix R, where both the orthogonal constraint
and the matrix determinant constraint |R| = 1 have to be
imposed, the 3 × 1 Cayley representation does not introduce
any extra constraint.

According to (3) and (6), a rotation matrix R could be
further represented by its Cayley rotation representation c as:

R = (I3 − [c]×)(I3 + [c]×)−1

=
(1 − cT c)I3 − 2[c]× + 2ccT

1 + cT c
. (7)
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The detailed derivation of Eq. (7) could be found in
Appendix A.

B. General Cayley Rotation Constraint

Given an input set of m relative rotations (corresponding to
n cameras), an epipolar geometry graph G = {V, E} could
be constructed as described in Section I. Without loss of
generality, let ci j be the Cayley representation of the input
relative rotation Ri j in the graph G = {V, E}, and ci be
the Cayley representation of the unknown absolute rotation
Ri (i = 1, 2, . . . , n).

By substituting the matrix-form representations {Ri , R j ,

Ri j } in Eq. (1) with their corresponding Cayley represen-
tations according to Eq. (7), the basic matrix-form rotation
constraint equation (i.e., Eq. (1)) could be re-formulated as
the following basic Cayley rotation constraint equation via
matrix/vector computation and algebraic reduction (Detailed
derivation could be found in Appendix B):

ci j = ([ci j ]× − I3)ci + (1 − cT
i j ci )c j , ∀(i, j) ∈ E . (8)

As is seen, the basic Cayley rotation constraint equation (8) is
mathematically equivalent to the original rotation equation (1)
without any information loss.

Moreover, it is noted that there exist more or less outliers
and noise in real data, and the basic Cayley rotation con-
straint equation (8) does not hold strictly in this case. Hence,
a residual ei j , representing the difference between the two
sides of (8), is introduced for constructing the general Cayley
rotation constraint equation as:

ei j = ([ci j ]× − I3)ci + (1 − cT
i j ci )c j − ci j . (9)

C. Formulation of Cayley Rotation Averaging

Our goal is to compute the n = |V| absolute Cayley
rotations {ci }

n
i=1 with the given m = |E | relative Cayley

rotations ci j in the graph G = {V, E}. Here, without loss of
generality, the absolute Cayley rotation c1 of the first camera
is fixed as c1 = [0, 0, 0]

T for removing the rotation ambiguity.
Let c = [c2; c3; . . . ; cn] ∈ R(3n−3)×1 be the vector

consisting of the Cayley representations of all the absolute
rotations except the first one. According to (9), the following
objective function that is an instantiation of Eq. (2) could
be straightforwardly obtained by minimizing the sum of the
residuals ei j defined in (9):

min
c
F(c) =

∑
(i, j)∈E

f (ei j )

=

∑
(i, j)∈E

f
(
([ci j ]× − I3)ci + (1 − cT

i j ci )c j − ci j

)
s.t. c1 = [0, 0, 0]

T (10)

where f (·) indicates an arbitrary loss function. Eq. (10)
provides a general objective form but not a special distance
metric, where different distance metrics could be used as the
metric function f (·), such as the commonly used L2, L1, L1/2
distances.

It is noted that Eq. (10) consists of a lot of measurements,
and each measurement is used to constrain the residual of a
specific relative rotation. The measurements corresponding to
the outliers (unknown in advance) would generally deteriorate
the estimation of absolute rotations. In other words, in the
case of outliers, the solution obtained by minimizing (10)
might seriously deviate from the correct absolute rotations.
Addressing this problem, an adaptive weighting mechanism is
explored to dynamically assign a 0/1 weight wi j ∈ {0, 1} to
each measurement in (10) during the optimization process:
wi j = 0 indicates that the corresponding measurement is
corrupted by outliers and this measurement is unavailable,
while wi j = 1 indicates that the corresponding measurement
is not corrupted by outliers. Let w = [wi j ] ∈ {0, 1}

m×1

be the m-dimensional weight vector, and its element wi j
corresponds to the Cayley rotation measurement with regard
to ci j (i.e., Ri j ). Then, a sparsity regularizer Regs(w) =

||1 − w||0 on the vector 1 − w, where ‘|| • ||0’ indicates the
L0 norm and 1 is an all-one vector, is added into (10) for both
avoiding a degenerated all-zero solution and resisting outliers.
Accordingly, the Cayley-based approach for rotation averaging
(CRA) is derived from (10) as:

min
c,w

∑
(i, j)∈E

wi j f (ei j )+ βRegs(w)

⇒ min
c,w

∑
(i, j)∈E

wi j f (ei j )+ β
∑
(i, j)∈E

||1 − wi j ||0

⇒ min
c,w

∑
(i, j)∈E

wi j f
(
([ci j ]× − I3)ci + (1 − cT

i j ci )c j − ci j

)
+ β||1 − w||0

s.t. c1 = [0, 0, 0]
T ,w ∈ {0, 1}

m×1 (11)

where β is a given weight. It has to be explained that each
two-term measurement “Fr

i j = wi j f (ei j ) + β||1 − wi j ||0”
in Eq. (11), which contains a basic term and a weighted
outlier regularizer, is equivalent to the following single-term
measurement without a weight as indicated in [38]:

Fr
i j =

{
β if f (ei j ) ≥ β

f (ei j ) else (12)

However, the proposed two-term measurement could reflect
our design motivation for resisting outliers more intuitively in
comparison to its single-term counterpart.

III. ALGORITHM FOR CRA

Note that different loss functions could be used for restrain-
ing the first term of (11) under the proposed CRA. In this
section, we propose a unified iterative algorithm for solving
three commonly-used loss functions (including the L2, L1,
and L1/2 losses) under CRA as defined in the second column
of Table I. Then, the convergence criterion of the proposed
algorithm is given.

A. Algorithm

As seen from (11), this optimization problem is a non-
linear problem with multiple variables. It could be solved
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TABLE I

LOSS FUNCTIONS AND THE CORRESPONDING SOLUTIONS TO et+1 TO (22): ‘./’ INDICATES THE ELEMENTWISE DIVISION,
‘sgn(·)’ REPRESNETS THE SIGN FUNCTION

via various optimization techniques in principle, such as the
Augmented Lagrange Multiplier(ALM)-based method [39],
[40], the Graduated Non-Convexity method [41], etc. Here,
we explore an ALM-based algorithm for solving (11) as
follows:

For computational convenience, we introduce auxiliary vari-
ables di j to replace 1 − cT

i j ci . Since c1 = [0, 0, 0]
T , we have

d1 j = 1 for all (1, j) ∈ E . Let k be the number of d1 j
(i.e. the edges connecting the first camera node) in E , and
d = [di j ]i ̸=1 ∈ R(m−k)×1 where m = |E | is the number of
all the given relative rotations. Let e = [ei j ] ∈ R3m×1 be the
vector consisting of the residuals corresponding to all the given
relative rotations, and then the minimization problem (11) is
reformulated as:

min
c,d,e,w

∑
(i, j)∈E

wi j f (ei j )+ β||1 − w||0

s.t. ∀(i, j) ∈ E, ei j = ([ci j ]× − I3)ci + di j c j − ci j ;

c1 = [0, 0, 0]
T
; ∀(i = 1, j) ∈ E, di j = 1;

∀(i ̸= 1, j) ∈ E, di j = 1 − cT
i j ci ; w ∈ {0, 1}

m×1. (13)

We employ the Augmented Lagrange Multiplier to
solve (13), and the corresponding loss function is:

L(c,d, e,w, ϒd, ϒe, η)

=

∑
(i, j)∈E

wi j f (ei j )+ β||1 − w||0

+

∑
(i, j)∈E

⟨ϒe
i j , ei j − ([ci j ]× − I3)ci − di j c j + ci j ⟩

+

∑
(i ̸=1, j)∈E

⟨ϒd
i j , di j − 1 + cT

i j ci ⟩

+
η

2

( ∑
(i, j)∈E

||ei j − ([ci j ]× − I3)ci − di j c j + ci j ||
2
2

+

∑
(i ̸=1, j)∈E

||di j − 1 + cT
i j ci ||

2
2

)
(14)

s.t. c1 = [0, 0, 0]
T
; ∀(i = 1, j) ∈ E, di j = 1; w ∈ {0, 1}

m×1

where ϒd
= [ϒd

i j ](i ̸=1, j)∈E ∈ R(m−k)×1 and ϒe
=

[ϒe
i j ](i, j)∈E ∈ R3m×1 denote the Lagrange multipliers, η is

a positive penalty parameter, and ‘⟨·, ·⟩’ is the inner product
operator. Theoretically, (14) can be solved by the classical

Lagrange multiplier method [42] as:

{ct+1,dt+1, et+1,wt+1
} =

arg min
c,d,e,w

L(c,d, e,w, ϒe,t , ϒd,t , ηt )

ϒd,t+1
= ϒd,t

+ ηt
[d t+1

i j − 1 + cT
i j c

t+1
i ](i ̸=1, j)∈E

ϒe,t+1
= ϒe,t

+

ηt
[et+1

i j − ([ci j ]× − I3)ct+1
i − d t+1

i j ct+1
j + ci j ](i, j)∈E

ηt+1
= ρηt

(15)

where [xi j ](i, j)∈E represents the column vector consisting of
all the terms xi j , ρ is a constant, and the subscript t indicates
the iteration index.

Then, the alternating direction scheme is adopted to mini-
mize (15) iteratively as done in [3] and [39]: at each iterative
step of the optimization process, each variable in (15) is
updated while the others are fixed, and after one sweep of
alternating minimization with regard to all the variables, these
Lagrange multipliers are updated. The complete algorithm is
listed in Algorithm 1, and it has to be pointed out that the
minimization in the first equation of (15) is approximated as
a block-wise minimization, which might be suboptimal. The
detailed performance of the iterative procedure is described as
follows:

For notational convenience, let ri j ∈ {1, 2, . . . ,m} indicate
the index of the given relative rotation ci j , and we define the
following intermediate variable matrices {Q, F , P , W , S, H}

as follows:
Q is a 3m × (3n − 3) sparse matrix, and at its ri j -th(ri j =

k + 1, . . . ,m, where k represents the number of the edges
connecting the first camera node as defined above) row triplet,
the elements at the (3i −5)-th, (3i −4)-th, (3i −3)-th columns
are defined as

Q(3ri j −2):3ri j ,(3i−5):(3i−3) = [ci j ]× − I3 (16)

and the rest elements in Q are set to zero.
F is also a 3m × (3n − 3) sparse matrix, and at its

ri j -th(ri j = 1, 2, . . . ,m) row triplet, the elements at the
(3 j − 5)-th, (3 j − 4)-th, (3 j − 3)-th columns are defined as

F(3ri j −2):3ri j ,(3 j−5):(3 j−3) = di j I3 (17)

and the rest elements in F are set to zero.
P is a 3m-dimensional column vector, whose ri j -th

(ri j = 1, 2, . . . ,m) element is defined as:

Pri j = −ci j (18)
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W is a 3m-dimensional column vector, whose ri j -th
(ri j = 1, 2, . . . ,m) element is defined as:

Wri j = wi j 13 (19)

where ‘13’ is the 3-dimensional all-one column vector.
S is a (m − k)× (3n −3) sparse matrix, and at its (ri j − k)-

th(ri j = k + 1, . . . ,m) row, the elements at the (3i − 5)-th,
(3i − 4)-th, (3i − 3)-th(i = 2, 3, . . . , n) columns are defined
as

Sri j −k,(3i−5):(3i−3) = cT
i j (20)

and the rest elements in S are set to zero.
H is a 3m × m sparse matrix, and at its ri j -th(ri j =

1, 2, . . . ,m) row triplet, the elements at the ri j -th column are
defined as

H(3ri j −2):3ri j ,ri j = c j (21)

and the rest elements in H are set to zero.
Optimizing e: Here, we investigate how to obtain e when

the L2, L1, and L1/2 losses are used respectively as the loss
function f (·) in (13).

Given {ct ,dt ,wt , ηt , ϒe,t
}, according to the definitions on

{Q, F, P,W } in (16), (17), (18), and (19), the optimization
problem (15) under the L2, L1, and L1/2 cases becomes:

arg min
e

∑
W ⊙ f (e)+

ηt

2
||e − Qct

− Fct
−P +

ϒe,t

ηt ||
2
2

(22)

where ‘⊙’ indicates the Hadamard product, f (·) represents
an arbitrary one of the L2, L1, and L1/2 losses. And the
closed-form solutions to (22) under the three cases are listed
in Table I, and more computational details could be found in
Appendixes C-E.

Optimizing c: Given {et+1,dt , ηt , ϒe,t , ϒd,t
}, according to

the definitions on {Q, F, P, S} in (16), (17), (18), and (20),
the optimization problem (15) becomes:

arg min
c

||et+1
− Qc − Fc−P +

ϒe,t

ηt ||
2
2

+ ||Sc + dt
− 1m−k +

ϒd,t

ηt ||
2
2 (23)

where ‘1m−k’ is the (m − k)-dimensional all-one column vec-
tor. It is a standard least-squares problem, and its closed-form
solution is:

ct+1
=

(
(Q + F)T (Q + F)+ ST S

)−1(
(Q + F)T (et+1

−P +
ϒe,t

ηt )− ST (dt
− 1m−k +

ϒd,t

ηt )

)
. (24)

Optimizing d: Given {ct+1, et+1,wt , ηt , ϒe,t , ϒd,t
}, accord-

ing to the definitions on {Q, P, S, H} in (16), (18), (20),
and (21), the optimization problem (15) becomes:

arg min
d

||et+1
− H11k − H2d − Qct+1

−P +
ϒe,t

ηt ||
2
2

+ ||Sct+1
+ d − 1m−k +

ϒd,t

ηt ||
2
2 (25)

Algorithm 1 CRA

where H1 represents the sub-matrix consisting of the left k
columns of H , H2 represents the sub-matrix consisting of the
right m−k columns of H , and ‘1k’ is the k-dimensional all-one
column vector.

It is a standard least-squares problem, and its closed-form
solution is:

dt+1
= (H T

2 H2 + Im−k)
−1

(
H T

2 (e
t+1

− H11k − Qct+1

−P +
ϒe,t

ηt )− (Sct+1
− 1m−k +

ϒd,t

ηt )

)
(26)

where Im−k represents the (m − k)× (m − k) identity matrix.
Optimizing w: Given et+1, the optimization problem (15)

becomes:

arg min
w

∑
(i, j)∈E

wi j f (et+1
i j )+ β||1 − w||0

s.t. w ∈ {0, 1}
m×1 (27)

Since w ∈ {0, 1}
m×1, it always holds that ||1−w||0 = 1−w.

Then, the solution to (27) is:

wt+1
i j =

{
0 if f (ei j ) ≥ β

1 if f (ei j ) < β
(28)

B. Convergence Criterion

The explored Algorithm 1 is an iterative ALM(Augmented
Lagrange Multiplier)-based algorithm for solving a multiple-
block-variable optimization problem, and as far as we know,
there has been a lack of theoretical proof on the con-
vergence of such kind of ALM-based algorithms(e.g. [43],
[44]). However, at each iteration during the optimization
process of Algorithm 1, a closed-form solution of each
variable could be obtained according to the aforementioned
description in Section III-A, and we have empirically found
that this algorithm always converges under the used three
losses (i.e., L2, L1, and L1/2 losses) in our experiments.
Its termination criterion is that the ratio of the values
of Func. (13) at two continuous iterations is approxi-
mately equal to 1, i.e.

∣∣∣( ∑
(i, j)∈E wt+1

i j f (et+1
i j ) + β||1 −

wt+1
||0

)
/
( ∑

(i, j)∈E wt
i j f (et

i j )+ β||1 − wt
||0

)
− 1

∣∣∣ ≤ δ (δ is

a tiny threshold, and it is set to be 10−5 here).

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 19,2024 at 00:56:26 UTC from IEEE Xplore.  Restrictions apply. 



DONG et al.: CAYLEY ROTATION AVERAGING: MULTIPLE CAMERA AVERAGING UNDER THE CAYLEY FRAMEWORK 4179

Remark: As noted from Algorithm 1, other than the used L2,
L1, and L1/2 losses, many convex loss functions could be used
as f (·) and easily embedded in the proposed CRA approach.
Only the variable e needs to be optimized in a corresponding
manner to a new choice of f (·), while the rest variables could
be optimized as done in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, three Cayley rotation averaging methods are
derived from the proposed CRA by embedding the L2, L2, and
L1/2 losses, denoted as CRA2, CRA1, CRA1/2 respectively.
All the derived methods are implemented and evaluated using
MATLAB on a 3.80GHz desktop.

A. Datasets

Real Datasets: The proposed methods are evaluated
on 16 benchmark datasets, including Ellis Island, Piazza
Del Popolo, NYC Library, Madrid Metropolis, Yorkminster,
Montreal Notre Dame,Tower of London, Alamo, Notre Dame,
Vienna Cathedral, Union Square, Roman Forum, Piccadilly,
Trafalgar, Arts Quad, San Francisco. And the relative rota-
tions on the first 14 datasets are provided by the authors
of [8], while the relative rotations on the last two datasets
are provided by the authors of [6]. The second column of
Table IV lists the number n = |V| of the cameras in the largest
connected component of these datasets, while the third column
of Table IV lists the number m = |E | of the given relative
rotations.

As done in [25] and [26], we perform incremental
BA(Bundle Adjustment) on all the used datasets, and then
the obtained results are used as the ground truths in our
experiments. Here, two points have to be explained: (i) The
ground-truth results are not available for all the cameras
in each dataset, and the fourth column of Table IV lists
the number ng of the cameras with the ground-truth global
rotations; (ii) As done in [26], the Gendarmenmarkt dataset
is not used for evaluation in this work, because this dataset
contains repetitive scene structures and incremental BA could
not obtain high-quality absolute camera rotations from this
dataset as indicated in [8] and [10]. In addition, since there
generally exists an unknown non-identical rotation transfor-
mation between the estimated set of global rotations by a
rotation averaging method and the corresponding ground-truth
rotations, we use the sum of squares alignment approach as
suggested in [25] and [26] to find this rotation transformation
and then align the estimated set of global rotations to the
ground-truth set before algorithmic evaluation.

Synthetic Datasets: In addition to the above real-world
datasets, we build three sets of synthetic datasets in controlled-
but-challenging conditions for more comprehensive evaluation
as follows:

For evaluation in the cases of noise and outliers, we build
the first set SD1 of synthetic datasets: we firstly synthesize
100 absolute camera rotations randomly as ground truths,
and accordingly, we obtain totally 4950 relative rotations
among these cameras. Then, we add random Gaussian noise
with mean of 0 and standard deviation of 30o into each

relative rotation. Next, we use the selection strategy suggested
in [26] to automatically selected 20% of these noisy relative
rotations as the observed relative rotations. Finally, in order
to investigate the performances of the proposed method and
the comparative methods with increasing amounts of outliers,
a specific outlier percentage p = {10%, 15%, 20%} of the
observed relative rotations are replaced with other rotations
so that they could be used as outliers. Under each config-
uration of p, we synthesize 10 datasets independently for
evaluation.

For evaluation in the challenging case where some input
relative rotations are close to π , we build the second set
SD2 of synthetic datasets: we firstly synthesize 100 absolute
camera rotations randomly as ground truths, and accordingly,
we obtain totally 4950 relative rotations among these cam-
eras. Then, we add random Gaussian noise with mean of
0 and standard deviation of 30o into each relative rotation.
Next from these noisy relative rotations, we select the ones
whose absolute rotation difference from π is smaller than
D = {π/4, π/6, π/12} respectively as three initial synthetic
datasets. Finally, for each initial synthetic dataset, we ran-
domly keep a percentage s = {10%, 20%, 30%} of relative
rotations but replace the rest relative rotations with randomly
selected relative rotations whose absolute rotation difference
from π is larger than or equal to D, resulting in the synthetic
datasets where the percentage of cases near π and the distance
between the rotation angle and π can be controlled. Under
each of the above parameter configurations, we synthesize
10 datasets independently for evaluation.

In order to further evaluate the performance of the proposed
method for handling the above challenging case with more
synthetic cameras, we build the third set SD3 of synthetic
datasets with 1000 cameras by utilizing the same data synthe-
sis manner of SD2.

B. Implementation Details

Similar to other iterative algorithms, Algorithm 1 needs a
set of initial values of the involved variables: As done in [26],
we use the estimated raw rotations by the L1RA method [25]
to initialize the rotation variable c. The maximum number of
iterations in the L1RA initialization is preset to 5. The weight
variable w is simply initialized with an all-one vector, and
the variables {d, e} are not initialized manually but updated
automatically. The iterative parameters {ϒe,t , ϒd,t , ηt

} in
Algorithm 1 are simply initialized as: ϒe,0

= ϒd,0
= 0,

η0
= 10. The updating orders for all the variables are outlined

in Algorithm 1.

C. Influence of the Weight β in (11)

Here, we evaluate the influence of the weight β on the
proposed three methods, including CRA2, CRA1, and CRA1/2.
The three methods with β = {0, 10−3, 10−2, 10−1

} are tested
respectively on the first three datasets in Table IV, and the
corresponding results are reported in Table II. Here, for the
case of β = 0, the weight vector w in Eq. (11) are set to be
an all-one vector constantly during the optimization process
of Algorithm 1.
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TABLE II
ROTATION ERRORS (IN DEGREES) BY THE PROPOSED METHODS WITH DIFFERENT CHOICES OF β

TABLE III
ROTATION ERRORS (IN DEGREES) BY THE PROPOSED METHODS WITH DIFFERENT CHOICES OF δ

TABLE IV
COMPARISON OF ROTATION ERRORS (IN DEGREES) ON THE BENCHMARK DATASETS UNDER THE SUM OF SQUARES ALIGNMENT APPROACH: m DENOTES

THE NUMBER OF THE INPUT RELATIVE ROTATIONS, n DENOTES THE TOTAL NUMBER OF GLOBAL ROTATIONS, ng DENOTES THE NUMBER
OF THE GROUND-TRUTH GLOBAL ROTATIONS. THE BEST AND THE SECOND BEST RESULTS ARE IN BOLD AND UNDERLINED TYPES

RESPECTIVELY. ‘–’ INDICATES THAT DISCO FAILED ON THE ‘NOTRE DAME’ DATASET AS INDICATED IN [26]

Two points could be observed from Table II:
• The angle errors by the three proposed methods with β =

0 are higher than those with β = {10−3, 10−2, 10−1
} in

most cases, indicating the effectiveness of the introduced
sparsity regularizer on the vector 1 − w in Eq. (11). It is
also noted that the angle error of CRA1/2 with β = 0 on
the Ellis Island dataset is exceptionally lower than those
of CRA1/2 with the other values of β. The reason is two-
fold: (i) The used L1/2 norm in CRA1/2 is relatively
insensitive to outliers than both the L2 and L1 losses,
consistent with the reported results with different losses
in [26]; (ii) The input set of relative rotations on the
Ellis Island dataset are corrupted by slight noise and few
outliers, and the introduced weights with β > 0 probably
weaken some available ones from the constructed Cayley
measurements in Eq. (11) to some extent in this case.

• It is noted that when β ranges from 10−3 to 10−1, the
corresponding angle errors change slightly. This issue

demonstrates the proposed model is not quite sensitive
to the choice of the tuning parameter β. In the rest
experiments, β is set to be 10−2 all the time.

D. Influence of the Threshold δ in Termination Criterion

In order to verify whether the proposed methods are sensi-
tive to the threshold δ in the termination criterion, we evaluate
the proposed methods with δ = {10−4, 10−5, 10−6

} respec-
tively on the first three datasets. The corresponding median
angle errors are reported in Table III. As seen from this table,
when δ ranges from 10−4 to 10−6, the corresponding angle
errors change slightly. These results demonstrate the proposed
methods are not quite sensitive to the choice of the threshold
δ. In the rest experiments, δ is set to be 10−5 all the time.

E. Accuracy Comparison

1) Comparison on Real Datasets: In this subsection,
we evaluate the proposed methods in comparison to five typical
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TABLE V
COMPARISON OF MEDIAN ROTATION ERRORS (IN DEGREES) ON THE BENCHMARK DATASETS UNDER THE ABSOLUTE SUM ALIGNMENT

MANNER. THE BEST AND THE SECOND BEST RESULTS ARE IN BOLD AND UNDERLINED TYPES RESPECTIVELY

global rotation averaging methods, including FRRA1/2 [26],
DISCO [6], Weiszfeld [22], RA-SfM [12], and NeuRoRA [11].
Considering that the reported results of NeuRoRA in [11]
are obtained by implementing the absolute sum alignment
approach, which is not recommended in [26] in comparison to
the sum of squares alignment approach, Table IV reports the
median rotation errors by the first four methods on the afore-
mentioned datasets. It has to be further pointed out that the
rotations errors by DISCO [6], Weiszfeld [22], and FRRA1/2
[26] in this table, are straightforwardly cited from [26]. The
results by RA-SfM [12] are obtained by implementing the
C++ code released by its authors.1

As seen from Table IV, the performance of the explored
method CRA2 by minimizing the L2 loss is inferior to the
other two explored methods with the L1 and L1/2 losses,
mainly because the L2 loss is generally more sensitive to
outliers, as indicated in many existing works [45], [46] for
handling other visual tasks. The proposed CRA1 method
performs better than DISCO [6] and Weiszfeld [22], and it
achieves close performances to FRRA1/2 [26] and RA-SfM
[12]. In addition, it is noted that all the used 16 datasets are
obtained from real-world scenarios, and there exists remark-
able differences among these datasets. It is quite difficult for
a given rotation averaging method to achieve high-accuracy
performances on all of them. However, the proposed CRA1/2
method achieves either the first place or the second place
in most cases. If comparing CRA1/2 with each comparative
method singly, CRA1/2 performs better in most cases. For
example, if comparing the proposed CRA1/2 with RA-SfM
singly, RA-SfM performs better on 6 of the total 16 datasets,
while CRA1/2 performs better on the rest 10 datasets; if
comparing with FRRA1/2, CRA1/2 performs better on the rest
10 datasets. These results demonstrate the effectiveness of the
proposed Cayley-based methods.

Moreover, it is noted that FRRA1/2 [26] and RA-SfM [12]
perform much better than DISCO [6] and Weiszfeld [22].
Table V further reports the median rotation errors by FRRA1/2,

1https://github.com/PeterZs/GraphOptim

RA-SfM, NeuRoRA [11], and the proposed CRA1/2 on the
aforementioned datasets under the absolute sum alignment
approach. It has to be pointed out that NeuRoRA is a learning-
based method, which is trained by utilizing the leave-one-out
strategy in their original paper, and its rotations errors in
this table are straightforwardly cited from [11]. As seen from
the last two rows of Table V, when handling the ArtsQuad
and SanFran datasets that come from a different source from
the other evaluation datasets, the performance of NeuRoRA
decreases significantly, while the other comparative methods
perform much better than NeuRoRA on the two datasets.
As seen from Table V and Table IV, the performance of the
proposed CRA1/2 method under the absolute sum alignment
approach is consistent with its performance under the sum of
squares alignment approach. If comparing CRA1/2 with each
comparative method singly, CRA1/2 still performs better in
most cases. These results further demonstrate the effectiveness
of the proposed Cayley-based methods.

2) Comparison on Synthetic Datasets: Here, considering
that the comparative methods FRRA1/2 [26] and RA-SfM [12]
perform much better than DISCO [6] and Weiszfeld [22],
we evaluate FRRA1/2, RA-SfM, and the proposed method
CRA1/2 on the synthetic dataset in controlled-but-challenging
conditions for comparison.

Firstly, in order to verify the effectiveness of the pro-
posed method for handling the cases of noise and outliers,
we evaluate the three methods on the SD1 set of synthetic
datasets, where the relative rotations are corrupted by Gaussian
noise and different percentages p = {10%, 15%, 20%} of
outliers as described in Section IV-A. The corresponding
mean, median, and maximum rotation errors are reported in
Table VI. It has to be explained that this table also reports
the results of the three methods on noisy relative rotations
without outliers (i.e., p = 0) for comparison. As seen from
this table, when the input relative rotations are only corrupted
by Gaussian noise without outliers, the proposed CRA1/2
outperforms the two comparative methods. With the increase
of outliers, the performances of all the three methods decrease
to some extent, and the proposed method always performs
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TABLE VI
COMPARISON OF ROTATION ERRORS (IN DEGREES) ON THE SD1 SYNTHETIC DATASETS WITH DIFFERENT OUTLIER PERCENTAGES

p = {0, 10%, 15%, 20%}. MN INDICATES THE MEAN ROTATION ERROR, MD INDICATES THE MEDIAN ERROR,
AND MAX INDICATES THE MAXIMUM ERROR. THE BEST RESULTS ARE IN BOLD

better than FRRA1/2 and RA-SFM under different outlier
percentages. These results demonstrate the effectiveness of
the proposed method for resisting outliers and noise to some
extent.

Secondly, as indicated in Section II-A, the Cayley rota-
tion representation assumes that the rotation angle is not
equal to π . Although this assumption holds in most
real-world datasets, in order to understand the sensitivity of
the Cayley representation to π , we evaluate the three methods
on both the SD2 and SD3 sets of synthetic datasets, where
the percentage s = {10%, 20%, 30%} of cases near π and the
distance D = {π/4, π/6, π/12} between the rotation angle
and π can be controlled. The corresponding mean, median,
and maximum rotation errors are reported in Table VII and
Table VIII. As seen from the two table, although the two sets
of datasets have different camera numbers (i.e., 100 cameras
and 1000 cameras), the corresponding results on the two sets
of datasets show the following consistent phenomenon: by
fixing the percentage s, with the decrease of D, the calculated
rotation errors of the three methods are both increased, demon-
strating that a given percentage of relative rotations that are
closer to π would lead to a worse result. Moreover, by fixing
D, with the increase of the percentage s, the calculated rotation
errors of the proposed CRA1/2 varies slightly. Moreover,
the proposed method outperforms the other two comparative
methods in all the cases. These results do not only demonstrate
that the Cayley rotation representation is not quite sensitive
to π , but also demonstrate the superiority of the proposed
Cayley-based method.

F. Time Comparison

In order to compare the computational speeds of the com-
parative methods, the running times of these methods on all the
datasets are reported in Table IX. In addition, for the proposed
methods, the iteration numbers of their L1RA initialization and
Cayley optimization, as well as their corresponding times, are
reported in Table X.

Here, the following points on the two tables have to
be explained: (i) The reported computational time for each
dataset in Table IX is the sum of the times of the L1RA
initialization and the Cayley optimization listed in Table X.
(ii) As done in [26], the running times of Weiszfeld [22]
(by implementing our reproduced code), FRRA1/2 [26] (by
implementing the code released by the authors), as well as
the proposed methods, are obtained via a MATLAB imple-
mentation on a 3.80GHz desktop; (iii) As indicated in [26],
DISCO [6] is computationally expensive and it needs a cluster
to deal with a large dataset, rather than a desktop. Hence,

Table IX straightforwardly cites the running times of DISCO
from [26], which were obtained via a mixed implementation
(C++, MATLAB) on a 36 node cluster, and each node
contains 2 2.67 GHz quad-core processors; (iv) As intro-
duced above, the authors in [12] provide the C++ code for
RA-SfM, and accordingly, the running times of RA-SfM in
Table IX are obtained by implementing the C++ code on a
desktop.

As seen from Table IX, all the proposed methods (CRA2,
CRA1, CRA1/2) run faster than DISCO [6] and Weiszfeld [22].
Compared with FRRA1/2, the three proposed methods run
relatively slowly on the datasets that contain a small/moderate
number of relative rotations. However, it is noted that when
dealing with both the Piccadilly and Trafalgar datasets that
contain a relatively large number of relative rotations, the
three proposed methods run faster than FRRA1/2. In addition,
RA-SfM [12] runs fastest among all the comparative methods,
mainly because C++ (for RA-SfM) generally has a faster
implementation speed than its counterpart MATLAB (for
FRRA1/2, CRA2, CRA1, and CRA1/2).

Moreover, it is noted from Table IX that although the
derived three methods (CRA2, CRA1, CRA1/2) have similar
optimization processes according to Algorithm 1, they spend
different times on most of the datasets, mainly because of
their different iteration steps when meeting the termination
condition of Algorithm 1.

G. Influence of Initialization

It is noted that in the above experiments, we use the
estimated rotations by the L1RA method [25] as initials
as done in [26]. Here, in order to evaluate the sensitivity
and convergence of the proposed method CRA1/2 to the
initialization, we evaluate the proposed CRA1/2 with random
initialization on each of the first five datasets listed in Table IV
5 times independently. The corresponding mean and standard
deviation values of the median rotation errors are reported in
Table XI. In addition, the initial rotation errors of L1RA are
also reported for comparison in Table XI. As seen from this
table, three points could be observed:

1 With different initials, the performance of the proposed
method varies in a moderate range.

2 In most cases, the initial errors of L1RA are larger
than those of the proposed CRA1/2 by a clear margin
(> 30%), demonstrating that the effectiveness of CRA1/2
mainly comes from its own specific design, rather than
its initial estimator L1RA. In addition, the performance
of the proposed method with the L1RA initialization is
better than or close to that with random initialization in
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TABLE VII
COMPARISON OF ROTATION ERRORS (IN DEGREES) ON THE SD2 SYNTHETIC DATASETS WHERE THE PERCENTAGE s = {10%, 20%, 30%} OF CASES

NEAR π AND THE DISTANCE D = {π/4, π/6, π/12} BETWEEN THE ROTATION ANGLE AND π .MN INDICATES THE MEAN ROTATION ERROR,
MD INDICATES THE MEDIAN ERROR, AND MAX INDICATES THE MAXIMUM ERROR. THE BEST RESULTS ARE IN BOLD

TABLE VIII
COMPARISON OF ROTATION ERRORS (IN DEGREES) ON THE SD3 SYNTHETIC DATASETS WHERE THE PERCENTAGE s = {10%, 20%, 30%} OF CASES

NEAR π AND THE DISTANCE D = {π/4, π/6, π/12} BETWEEN THE ROTATION ANGLE AND π .MN INDICATES THE MEAN ROTATION ERROR,
MD INDICATES THE MEDIAN ERROR, AND MAX INDICATES THE MAXIMUM ERROR. THE BEST RESULTS ARE IN BOLD

TABLE IX
COMPUTATIONAL TIME (IN SECONDS) COMPARISON ON THE BENCHMARK DATASETS

most cases. These results demonstrate that a strong ini-
tialization could improve the performance of the proposed
method than the random initialization to some extent.
Moreover, we also like to indicate that by comparing
the above results in Table IV and Table XI, the perfor-
mance of the proposed CRA1/2 with random initialization
is still competitive in comparison to these comparative
methods.

3 For the dataset “Piazza Del Popolo”, the proposed
CRA1/2 with the L1RA initialization obtains a poorer
result than CRA1/2 with 5 random initializations. The
reason is probably that: the problem for optimizing the
proposed CRA1/2 is a non-linear optimization prob-
lem, and the designed algorithm for optimizing CRA1/2
is an iterative algorithm, whose convergence solution

is dependent on its initial value. As indicated in the
numerical optimization theory, for a given non-linear opti-
mization algorithm, a relatively better initial is generally
helpful to search for a convergence solution, but the
better initial value could not guarantee that this algorithm
could surely obtain a more accurate solution, since this
algorithm with the better initial might converge to a
poorer local minimum occasionally. Hence, although the
L1RA initialization approach could provide a better initial
value than the random initialization approach, the pro-
posed CRA1/2 with the L1RA initialization might obtain
a worse result on some data (e.g., Piazza Del Popolo)
than CRA1/2 with a few random initializations. However,
as discussed in the second point, a strong initialization is
beneficial to the proposed CRA1/2 in most cases.
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TABLE X
ITERATION NUMBERS OF THE L1RA INITIALIZATION (DENOTED AS INIT) AND THE CAYLEYOPTIMIZATION (DENOTED AS CAY) AND THE

CORRESPONDING TIMES (SECONDS) BY IMPLEMENTING THE PROPOSED METHODS (CRA2 , CRA1 , CRA1/2)

TABLE XI
COMPARISON OF ROTATION ERRORS (IN DEGREE) BETWEEN L1RA INITIALIZATION AND RANDOM INITIALIZATION FOR THE PROPOSED CRA1/2 . MEAN

AND SD INDICATE THE MEAN VALUE AND THE STANDARD DEVIATION OF THE ROTATION ERRORS COMPUTED 5 TIMES INDEPENDENTLY

V. CONCLUSION

In this paper, we propose the Cayley-based approach CRA
for rotation averaging. Specifically, a general Cayley rotation
constraint equation is introduced by utilizing the Cayley
rotation representation, which could characterize the rela-
tionship between the relative rotations of pairwise cameras
and their global rotations in the cases of noise and outliers.
Then, the CRA approach is explored by integrating a set of
Cayley rotation constraints. In addition, a sparsity regular-
izer is introduced into CRA for alleviating the influence of
outliers further. Experimental results on both real and syn-
thetic datasets demonstrate the effectiveness of the proposed
approach.

Currently, the proposed CRA is explored under the
non-incremental rotation averaging strategy. In the future,
we would investigate how to extend the current version
of CRA into an incremental version under the incre-
mental rotation averaging strategy, for pursuing higher
accuracy.

APPENDIX

A. Derivation on Eq. (7)

According to the definition of Cayley transformation (i.e.,
Eq. (3)), Eq. (6 could be reformulated as:

R = ψ([c]×) = (I3 − [c]×)(I3 + [c]×)−1. (29)

And according to the definition of the skew-symmetric matrix
in Eq. (5), it holds

(I3 + [c]×)−1
=

ccT
+ I3 − [c]×
1 + cT c

. (30)

Then according to Eq. (29) and Eq. (30), we have

R = (I3 − [c]×)(I3 + [c]×)−1

= (I3 − [c]×) ·
ccT

+ I3 − [c]×
1 + cT c

=
ccT

− [c]×ccT
+ I3 − 2[c]× + [c]×[c]×
1 + cT c

. (31)

It is noted from Eq. (31) that [c]×ccT
= 03×3 and [c]×[c]× =

ccT
− cT cI3. Hence, Eq. (31) could be reformulated as the

following form (i.e., Eq. (7)):

R =
ccT

+ I3 − 2[c]× + ccT
− cT cI3

1 + cT c

=
(1 − cT c)I3 − 2[c]× + 2ccT

1 + cT c
. (32)

B. Derivation on Eq. (8)

Let {Ri , R j } be an arbitrary pair of absolute rotation matri-
ces, and let Ri j be the corresponding relative rotation matrix.
Accordingly, it holds that R j = Ri j Ri (i.e., Eq. (1)). Let
{ci , c j , ci j } be the corresponding Cayley representations to
{Ri , R j , Ri j }. According to Eq. (7), we have

Ri =
(1 − cT

i ci )I3 − 2[ci ]× + 2ci cT
i

1 + cT
i ci

(33)

Ri j =
(1 − cT

i j ci j )I3 − 2[ci j ]× + 2ci j cT
i j

1 + cT
i j ci j

(34)
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According to Eq. (3) and Eq. (6), we have:

[c j ]× = ψ(R j ) = ψ(Ri j Ri ) = (I3 − Ri j Ri )(I3 + Ri j Ri )
−1

(35)

where I3 represents the 3-order identity matrix, and ψ(•) is
the Cayley transformation that is defined as Eq. (3).

Let ci j = [ci j,x , ci j,y, ci j,z]
T and ci = [ci,x , ci,y, ci,z]

T , then
by substituting Eq. (33) and Eq. (34) into Eq. (35), we have
Eq. (36), as shown at the top of the next page. According to
Eq. (36), it holds that c j =

ci j +ci −[ci j ]×ci

1−cT
i j ci

. Then by multiplying

the two sides of this equation with 1−cT
i j ci , we obtain Eq. (8),

i.e.,

ci j = ([ci j ]× − I3)ci + (1 − cT
i j ci )c j .

C. Solution to (22) Under the L2 Loss

It is noted that the elements in W ∈ R3m×1 (as defined
in (19)) are either 1 or 0. When f (·) represents the L2 loss,
Func. (22) is re-formulated as:

arg min
e

||W ⊙ e||22 +
ηt

2
||e − Qct

− Fct
−P +

ϒe,t

ηt ||
2
2

(37)

where ‘⊙’ indicates the Hadamard product.
The closed-form solution to (37) could be obtained by

calculating the stationary point where the derivative of (37)
equals to zero:

et+1
= (Qct

+ Fct
+ P −

ϒe,t

ηt )./(
2W
ηt + 1) (38)

where ‘./’ indicates the element-wise division.

D. Solution to (22) Under the L1 Loss

Similar to the L2 case, when f (·) represents the L1 loss,
Func. (22) is re-formulated as:

arg min
e

||W ⊙ e||1 +
ηt

2
||e − Qct

− Fct
−P +

ϒe,t

ηt ||
2
2

(39)

where ‘⊙’ indicates the Hadamard product.
The closed-form solution to (39) is

et+1
= D(Qct

+ Fct
+ P −

ϒe,t

ηt ,
W
ηt ) (40)

where D(x, ϱ) = sgn(x)max(|x | − ϱ, 0) is the soft-
thresholding operator, and sgn(·) is the sign function.

E. Solution to (22) Under the L1/2 Loss

When f (·) represents the L1/2 loss, Func. (22) is
re-formulated as:

arg min
e

||W ⊙ e||1/2 +
ηt

2
||e − Qct

− Fct
−P +

ϒe,t

ηt ||
2
2

(41)

where ‘⊙’ indicates the Hadamard product.

Let A = Qct
+ Fct

+ P −
ϒe,t

ηt , then (41) could be solved
by dealing with 3m minimization subproblems independently,
whose objective functions have the same form as:

arg min
ei

Wi
√

|ei | +
ηt

2
||ei − Ai ||

2
2 (42)

where {Wi , ei , Ai } are the i-th element in {W, e, A} respec-
tively, and Wi ∈ {0, 1}. The above problem could be solved
under the following two cases respectively:

Case #1: When ei ≥ 0, let y =
√

ei ≥ 0, and we obtain the
following objective function by substituting ei with y2 in (42):

g(y) = Wi y +
ηt

2
||y2

− Ai ||
2
2 (43)

Accordingly, the first and second derivatives of g(y) are:

g′(y) = 2ηt y3
− 2ηt Ai y + Wi (44)

g′′(y) = 6ηt y2
− 2ηt Ai (45)

(1.1) If Ai ≤ 0, then it holds g′′(y) ≥ 0 according to (45)
(ηt is a positive parameter), indicating that g′(y) is nonde-
creasing for y ∈ [0,+∞). Furthermore, since g′(0) = Wi ≥ 0,
it holds g′(y) ≥ g′(0) ≥ 0 for y ∈ [0,+∞). Hence, y = 0 is
the minimum solution to (43) for y ∈ [0,+∞) under this case
(Ai ≤ 0).

(1.2) If Ai > 0, then y0 =
√

Ai/3 > 0 is the solution to
g′′(y) = 0 for y ∈ [0,+∞). Due to the fact that g′(0) = Wi ≥

0 and g′(y) is a cubic function, g′(y) is nonincreasing for
y ∈ [0, y0) and nondecreasing for y ∈ [y0,+∞), indicating
that the first derivative g′(y) achieves the local minimum in
y ∈ [0,+∞) at the point y0, i.e.:

g′(y0) = Wi − 4ηt

√
(

Ai

3
)3 (46)

• If g′(y0) ≥ 0 (i.e., 4ηt
√
(

Ai
3 )

3 ≤ Wi ), then g′(y) ≥

g′(y0) ≥ 0 for y ∈ [0,+∞), indicating that y = 0 is
the minimum solution to (43) for y ∈ [0,+∞) under
this case (Ai > 0).

• If g′(y0) < 0 (i.e., 4ηt
√
(

Ai
3 )

3 > Wi ), there exist the
following three solutions {y1, y2, y3} to g′(y) = 0:

y1 = 2

√
Ai

3
cos θ (47)

y2 = 2

√
Ai

3
cos(θ +

2π
3
) (48)

y3 = 2

√
Ai

3
cos(θ +

4π
3
) (49)

where θ =
1
3 arccos(− Wi

4ηt
√
(

Ai
3 )

3
) ∈ [0, π3 ] (in fact,

θ ∈ [
π
6 ,

π
3 ] more strictly). Then, it holds that cos(θ +

2π
3 ) ≤ cos(θ +

4π
3 ) ≤ cos θ and cos(θ +

2π
3 ) < 0, and

accordingly, it holds that y2 ≤ y3 ≤ y1 and y2 < 0.
Furthermore, since g(y) is a quartic function, y = y1 is
the local minimum solution to (43) for y ∈ [0,+∞)

under this case (Ai > 0), indicating that either g(y1)

or g(0) is the minimum value of g(y) for y ∈ [0,+∞).
This means that if Wi y1 +

ηt

2 (y
2
1 − Ai )

2 <
ηt

2 A2
i (i.e.,

g(y1) < g(0)), y = y1 is the minimum solution to (43)
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[c j ]× =


0 −

ci j,z+ci,z−ci j,x ci,y+ci j,yci,x

1−cT
i j ci

ci j,y+ci,y+ci j,x ci,z−ci j,zci,x

1−cT
i j ci

ci j,z+ci,z−ci j,x ci,y+ci j,yci,x

1−cT
i j ci

0 −
ci j,x +ci,x −ci j,yci,z+ci j,zci,y

1−cT
i j ci

−
ci j,y+ci,y+ci j,x ci,z−ci j,zci,x

1−cT
i j ci

ci j,x +ci,x −ci j,yci,z+ci j,zci,y

1−cT
i j ci

0

 = [
ci j + ci − [ci j ]×ci

1 − cT
i j ci

]× (36)

for y ∈ [0,+∞); otherwise, y = 0 is the minimum
solution.

The above proofs show that under Case #1 (i.e., ei ≥ 0),
if Wi y1 +

ηt

2 (y
2
1 − Ai )

2 <
ηt

2 A2
i and 4ηt

√
(

Ai
3 )

3 > Wi , the
minimum solution to (42) is et+1

i = y2
1 , otherwise et+1

i = 0.
Case #2: When ei ≤ 0, let ēi = −ei ≥ 0 and Āi = −Ai ,

then (42) is re-formulated as:

arg min
ēi

Wi
√

|ēi | +
ηt

2
||ēi − Āi ||

2
2 (50)

It is noted that (50) has the same formulation and condition
as (42) in the aforementioned Case #1. Hence, for the defined
y1 and θ in Case #1, their corresponding forms in Case #2
are y1 = 2

√
−

Ai
3 cos θ and θ =

1
3 arccos(− Wi

4ηt
√
(−

Ai
3 )

3
) with

Ai < 0. Accordingly, in Case #2, if Wi y1 +
ηt

2 (y
2
1 + Ai )

2 <

ηt

2 A2
i and 4ηt

√
(−

Ai
3 )

3 > Wi , the minimum solution to (42)
is et+1

i = −y2
1 , otherwise et+1

i = 0.
Considering both the above two cases, the minimum solu-

tion to (42) is:

et+1
i =


Bi if 4ηt

√
(
|Ai |

3 )3 > Wi

and Wi
√

|Bi | +
ηt

2 (Bi − Ai )
2 <

ηt

2 A2
i

0 otherwise

(51)

where Bi =
4
3 Ai cos2 θ , and θ =

1
3 arccos(− Wi

4ηt
√
(

|Ai |
3 )3

)
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